Welcome to Indian Stock Market Analysis & Strategy Backtester, a comprehensive collection of Jupyter notebooks for analyzing and backtesting stock trading strategies on Indian equities using historical data.
This project leverages the following Python libraries and tools:
- 📦 NumPy – Efficient numerical computations
- 📈 Pandas – Data manipulation and analysis
- 📊 Matplotlib – Visualization and plotting
- 💹 yfinance – Fetching historical stock data from Yahoo Finance
- ☁️ Google Colab – Cloud-based notebook environment for execution and collaboration
- ✅ Analyze Indian stock market data from the past 10 years
- 📊 Implement technical indicators (EMA, SMA, RSI, MACD, etc.)
- 🔁 Backtest trading strategies using historical price data
- 🧪 Ready-to-use strategies: EMA crossover, SMA bias, long bias
- 📈 Visualize signals, trades, and portfolio performance
- 🗃 Modular notebooks for easy experimentation
📁 indian_stock_analysis/
│
├── 📘 [ADVANCED]indian_stock_analysis_past10years.ipynb # Deep analysis of Indian stocks
├── 📘 [BACKTESTER]Financial_Functions.ipynb # Custom financial & helper functions
├── 📘 Basic_analysis.ipynb # Entry-level analysis on price/returns
├── 📘 emacrossoverstategy.ipynb # EMA crossover strategy backtesting
├── 📘 SMA_and_LONGBIAS_Strategy.ipynb # SMA-based long-only trading logic
├── 📘 Technical_Indicators.ipynb # Technical indicator implementations