-
Taian Guo1,2, Haiyang Shen*1, Junyu Luo1, Binqi Chen1, 2, Hongjun Ding3, Jinsheng Huang1, 2, Luchen Liu2, Yun Ma1†, Ming Zhang1†,1Peking University, 2Zhengren Quant, 3Baruch College* Project Leader. + Corresponding author.
This repository contains the official implementation of AlphaPROBE (Alpha Mining Via Principled Retrieval and On-graph Biased Evolution), a framework that reframes alpha mining as the strategic navigation of a DAG.
AlphaPROBE is a closed-loop alpha mining pipeline consisting of the Bayesian Factor Retriever and the DAG-aware Factor Generator. The Bayesian Factor Retriever retrieves the most promising factors for evolution, and the DAG-aware Factor Generator is a a structural multi-agent pipeline that generate high-quality and novel offspring from the selected factors.
conda create --name your_env python==3.11.0 conda activate your_env pip install pdm pdm install
Run the following command to retrive data from microsoft Qlib
wget https://github.com/chenditc/investment_data/releases/latest/download/qlib_bin.tar.gz mkdir -p ~/.qlib/qlib_data/cn_data tar -zxvf qlib_bin.tar.gz -C ~/.qlib/qlib_data/cn_data --strip-components=1 rm -f qlib_bin.tar.gz
- modify dataset name (default csi 300.)
- modfiy your model url, model name and model key.
- run AlphaPROBE
python train_new_work.pypython run_adaptive_combination.py --expression_file your_expression_file
Please feel free to contact the authors below if you have more questions:
- Taian Guo, taianguo@stu.pku.edu.cn
- Haiyang Shen, hyshen@stu.pku.edu.cn
If you find our work useful, please kindly consider citing our work as follows:
@misc{guo2026alphaprobealphaminingprincipled,
title={AlphaPROBE: Alpha Mining via Principled Retrieval and On-graph biased evolution},
author={Taian Guo and Haiyang Shen and Junyu Luo and Binqi Chen and Hongjun Ding and Jinsheng Huang and Luchen Liu and Yun Ma and Ming Zhang},
year={2026},
eprint={2602.11917},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2602.11917},
}