Skip to content

fxhxdxd/upvalue-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mean Reversion Strategy Analyzer

A web application that analyzes stocks using a mean reversion strategy optimized for day trading. The application provides buy/sell signals based on price deviations from moving averages.

Features

  • Real-time stock analysis using mean reversion strategy
  • Support for multiple markets (NSE, BSE, US)
  • Interactive charts and visualizations
  • Detailed trading signals and recommendations
  • Risk management indicators (Stop Loss, Take Profit)

Tech Stack

  • Frontend: React.js with Material-UI and Recharts
  • Backend: FastAPI (Python)
  • Data Analysis: Pandas, NumPy
  • Stock Data: Yahoo Finance API

Project Structure

mean-reversion-analyzer/
├── frontend/               # React frontend
│   ├── src/
│   │   ├── components/    # React components
│   │   └── App.js        # Main application
│   └── package.json      # Frontend dependencies
├── backend/               # FastAPI backend
│   ├── api.py           # API endpoints
│   └── requirements.txt  # Backend dependencies
└── README.md            # Project documentation

Setup and Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mean-reversion-analyzer.git
    cd mean-reversion-analyzer
  2. Set up the backend:

    cd backend
    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
  3. Set up the frontend:

    cd frontend
    npm install

Running the Application

  1. Start the backend server:

    cd backend
    uvicorn api:app --reload --port 8000
  2. Start the frontend development server:

    cd frontend
    npm start
  3. Open your browser and navigate to http://localhost:3000

Usage

  1. Select your market (NSE, BSE, or US)
  2. Enter stock symbols (one per line)
  3. Adjust the lookback period (10-60 days recommended)
  4. Set your investment amount per stock
  5. Click "Analyze Stocks" to get results

Deployment

The application can be deployed to Vercel (frontend) and any Python hosting service (backend). Make sure to set up the appropriate environment variables and CORS settings.

License

MIT License

About

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published