Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ The following common BLAS kernels have been implemented in multiple frameworks.
| [dot](./docs/dot.md) | dot product | $z = x^\top y$ | $2n$ | $2n$ | [✅](./kernel_course/python_ops/dot.py) | [✅](./kernel_course/pytorch_ops/dot.py) | [✅](./kernel_course/triton_ops/dot.py) | ❌ | [✅](./tests/test_dot.py) |
| [gemv](./docs/gemv.md) | general matrix-vector multiply | $y = \alpha A x + \beta y$ | $2mn$ | $mn + n + 2m$ | [✅](./kernel_course/python_ops/gemv.py) | [✅](./kernel_course/pytorch_ops/gemv.py) | [✅](./kernel_course/triton_ops/gemv.py) | ❌ | [✅](./tests/test_gemv.py) |
| [geru](./docs/geru.md) | general rank-1 update | $A = A + \alpha x y^\top$ | $2mn$ | $2mn + m + n$ | [✅](./kernel_course/python_ops/geru.py) | [✅](./kernel_course/pytorch_ops/geru.py) | [✅](./kernel_course/triton_ops/geru.py) | ❌ | [✅](./tests/test_geru.py) |
| [gemm](./docs/gemm.md) | general matrix-matrix multiply | $C = \alpha A B + \beta C$ | $2mnk$ | $mk + nk + 2mn$ | [✅](./kernel_course/python_ops/gemm.py) | [✅](./kernel_course/pytorch_ops/gemm.py) | [✅](./kernel_course/triton_ops/gemm.py) | ❌ | |
| [gemm](./docs/gemm.md) | general matrix-matrix multiply | $C = \alpha A B + \beta C$ | $2mnk$ | $mk + nk + 2mn$ | [✅](./kernel_course/python_ops/gemm.py) | [✅](./kernel_course/pytorch_ops/gemm.py) | [✅](./kernel_course/triton_ops/gemm.py) | ❌ | [✅](./tests/test_gemm.py) |


## Transformer Modules
Expand Down
95 changes: 95 additions & 0 deletions tests/test_gemm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import pytest
import torch

from kernel_course import testing
from kernel_course.python_ops import gemm as python_gemm

try:
from kernel_course.pytorch_ops import gemm as pytorch_gemm

HAS_PYTORCH = True
except Exception:
pytorch_gemm = None
HAS_PYTORCH = False

try:
from kernel_course.triton_ops import gemm as triton_gemm

HAS_TRITON = True
except Exception:
triton_gemm = None
HAS_TRITON = False

try:
from kernel_course.cute_ops import gemm as cute_gemm

HAS_CUTE = True
except Exception:
cute_gemm = None
HAS_CUTE = False


def factory(
MNK: tuple[int, int, int],
device: torch.device,
dtype: torch.dtype = torch.float32,
):
M, N, K = MNK
A = torch.linspace(0.0, 1.0, steps=M * K, device=device, dtype=dtype).view(M, K)
B = torch.linspace(0.0, 1.0, steps=K * N, device=device, dtype=dtype).view(K, N)
C = torch.linspace(0.0, 1.0, steps=M * N, device=device, dtype=dtype).view(M, N)
alpha = 1.14
beta = 5.14
return (A, B, C, alpha, beta), {}


@pytest.mark.parametrize(
"device",
[
pytest.param(
torch.device("cuda"),
marks=pytest.mark.skipif(
not torch.cuda.is_available(), reason="requires CUDA"
),
),
pytest.param(
torch.device("mps"),
marks=pytest.mark.skipif(
not torch.backends.mps.is_available(), reason="requires MPS"
),
),
],
)
@pytest.mark.parametrize(
"dtype",
[torch.float32, torch.float16, torch.bfloat16],
)
@pytest.mark.parametrize(
"MNK",
[
(1 << 4, 1 << 4, 1 << 4),
(1 << 8, 1 << 8, 1 << 8),
],
)
def test_gemm_benchmark(
device: torch.device,
dtype: torch.dtype,
MNK: tuple[int, int, int],
) -> None:
impls = testing.get_impls(
python_impl=python_gemm.gemm,
pytorch_impl=pytorch_gemm.gemm if HAS_PYTORCH else None,
triton_impl=triton_gemm.gemm if HAS_TRITON else None,
cute_impl=cute_gemm.gemm if HAS_CUTE else None,
)

# Benchmark each implementation
config = testing.BenchmarkConfig(warmup=3, repeat=100)
results = testing.run_benchmarks(
impls,
lambda: factory(MNK, device, dtype),
flops=2 * MNK[0] * MNK[1] * MNK[2],
config=config,
)

testing.show_benchmarks(results)
Loading