Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ The following common BLAS kernels have been implemented in multiple frameworks.
| [axpby](./docs/axpby.md) | update vector| $y = \alpha x + \beta y$ | $3n$ | $3n$ | [✅](./kernel_course/python_ops/axpby.py) | [✅](./kernel_course/pytorch_ops/axpby.py) | [✅](./kernel_course/triton_ops/axpby.py) | ❌ | [✅](./tests/test_axpby.py) |
| [dot](./docs/dot.md) | dot product | $z = x^\top y$ | $2n$ | $2n$ | [✅](./kernel_course/python_ops/dot.py) | [✅](./kernel_course/pytorch_ops/dot.py) | [✅](./kernel_course/triton_ops/dot.py) | ❌ | [✅](./tests/test_dot.py) |
| [gemv](./docs/gemv.md) | general matrix-vector multiply | $y = \alpha A x + \beta y$ | $2mn$ | $mn + n + 2m$ | [✅](./kernel_course/python_ops/gemv.py) | [✅](./kernel_course/pytorch_ops/gemv.py) | [✅](./kernel_course/triton_ops/gemv.py) | ❌ | [✅](./tests/test_gemv.py) |
| [geru](./docs/geru.md) | general rank-1 update | $A = A + \alpha x y^\top$ | $2mn$ | $2mn + m + n$ | [✅](./kernel_course/python_ops/geru.py) | [✅](./kernel_course/pytorch_ops/geru.py) | | ❌ | ❌ |
| [geru](./docs/geru.md) | general rank-1 update | $A = A + \alpha x y^\top$ | $2mn$ | $2mn + m + n$ | [✅](./kernel_course/python_ops/geru.py) | [✅](./kernel_course/pytorch_ops/geru.py) | [✅](./kernel_course/triton_ops/geru.py) | ❌ | ❌ |
| gemm | general matrix-matrix multiply | $C = \alpha A B + \beta C$ | $2mnk$ | $mk + nk + 2mn$ | ❌ | ❌ | ❌ | ❌ | ❌ |


Expand Down
125 changes: 125 additions & 0 deletions kernel_course/triton_ops/geru.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import torch
import triton
import triton.language as tl


@triton.autotune(
configs=[
triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=2),
],
key=["n_elements_M", "n_elements_N"],
)
@triton.heuristics(
{
"EVEN_M": lambda args: args["n_elements_M"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["n_elements_N"] % args["BLOCK_N"] == 0,
}
)
@triton.jit
def geru_kernel(
A,
X,
Y,
stride_am,
stride_an,
stride_x,
stride_y,
alpha,
n_elements_M,
n_elements_N,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr,
):
# There are multiple program processing different blocks of data
# We identify which program we are in using program_id
start_m = tl.program_id(0)
start_n = tl.program_id(1)
# This program will process inputs that offset from the initial pointer
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
# Initialize pointers to the start of the blocks
A_ptr = A + offs_m[:, None] * stride_am + offs_n[None, :] * stride_an
x_ptr = X + offs_m * stride_x
y_ptr = Y + offs_n * stride_y
# Create a mask to guard memory operations against out-of-bounds accesses
mask_m = offs_m < n_elements_M
mask_n = offs_n < n_elements_N
# Load a block of A from DRAM, masking out any extra elements in case the input is not a multiple of the block size
if EVEN_N & EVEN_M:
a = tl.load(A_ptr)
else:
a = tl.load(
A_ptr,
mask=mask_m[:, None] & mask_n[None, :],
other=0.0,
)
# Load x and y vectors from DRAM
if EVEN_M:
x = tl.load(x_ptr)
else:
x = tl.load(x_ptr, mask=mask_m, other=0.0)
if EVEN_N:
y = tl.load(y_ptr)
else:
y = tl.load(y_ptr, mask=mask_n, other=0.0)
# Compute the outer product
p = x[:, None] * y[None, :]
# Scale by alpha and update A
a += alpha * p
# Store the updated block of A back to DRAM
if EVEN_N & EVEN_M:
tl.store(A_ptr, a)
else:
tl.store(
A_ptr,
a,
mask=mask_m[:, None] & mask_n[None, :],
)


def geru(
A: torch.Tensor,
x: torch.Tensor,
y: torch.Tensor,
alpha: float,
):
"""
Updates tensor `A` by adding the outer product of vectors `x` and `y` scaled by `alpha` using a Triton kernel.

Args:
A (torch.Tensor): Matrix tensor to be updated.
x (torch.Tensor): Vector tensor.
y (torch.Tensor): Vector tensor.
alpha (float): Scaling factor for the outer product of `x` and `y`.

Returns:
torch.Tensor: The updated tensor `A`.
"""

# Calculate the number of elements in the input tensors
n_elements_M, n_elements_N = A.shape

# The SPMD launch grid is two-dimensional, with each program processing a block of A
def grid(meta):
return (
triton.cdiv(n_elements_M, meta["BLOCK_M"]),
triton.cdiv(n_elements_N, meta["BLOCK_N"]),
)

# Launch the Triton kernel
geru_kernel[grid](
A,
x,
y,
A.stride(0),
A.stride(1),
x.stride(0),
y.stride(0),
alpha,
n_elements_M,
n_elements_N,
)

return A