Skip to content

🧠 Agentic AI Orchestrator: Modular multi-agent system with LangGraph, ChromaDB, OpenTelemetry

Notifications You must be signed in to change notification settings

deval245/agentic-ai-orchestrator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

6 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Agentic AI Orchestrator

Multi-agent orchestration engine built with LangGraph, LangChain, FastAPI, and ChromaDB. Modular. Scalable. Compliant. Document-aware


πŸ§ͺ Overview

Agentic AI Orchestrator is a production-grade multi-agent engine enabling document-based RAG workflows with automated planning, response generation, and compliance validation. It leverages LangGraph DAGs to coordinate intelligent agents for PDF ingestion, QA, and policy checking β€” all through a single FastAPI endpoint.


πŸ“‚ Project Structure

agentic-ai-orchestrator/
β”œβ”€β”€ agents/                  # Specialized LangChain agents
β”‚   β”œβ”€β”€ compliance.py        # Compliance Agent
β”‚   β”œβ”€β”€ planner.py           # Planning Agent
β”‚   β”œβ”€β”€ responder.py         # Response generation Agent
β”‚   β”œβ”€β”€ retriever.py         # Vector Retriever
β”‚   └── verifier.py          # Final answer verification
β”œβ”€β”€ chains/                  # Custom LLM chains
β”œβ”€β”€ graph/                   # LangGraph DAG definition
β”œβ”€β”€ orchestrate.py           # Graph compilation logic
β”œβ”€β”€ scripts/                 # Graph visualizer scripts
β”œβ”€β”€ app/                     # FastAPI backend
β”œβ”€β”€ test/                    # Unit/integration tests
└── README.md                # This file
Agent Role
🧭 Planner Decides execution flow and agents/tools to use
πŸ—£οΈ Responder Generates coherent LLM responses using context and intent
πŸ” Compliance Applies policy/PII filters to prevent risky or non-compliant output
πŸ”Ž Retriever Fetches top-k document chunks from ChromaDB
βœ… Verifier Final step to verify answers are meaningful and integrity-safe

βš™οΈ Key Features

  • βœ… PDF-first vector indexing with auto chunking
  • 🧠 LangGraph multi-agent DAG orchestration
  • 🧾 FastAPI + curl-ready backend
  • πŸ”Ž Contextual retrieval with ChromaDB
  • πŸ” Composable and extensible workflow
  • 🚨 Compliance guardrails with entity checkers

πŸš€ Quickstart

1. Install Dependencies

python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

2. Run FastAPI Server

make run
# or
uvicorn app.main:app --reload

Visit: http://localhost:8000/docs

3. Hit Agent via curl

curl -X POST http://127.0.0.1:8000/run-agent \
  -H "accept: application/json" \
  -H "Content-Type: multipart/form-data" \
  -F "user_input=Summarize the key traits Amazon expects from its leaders" \
  -F "file=@path_to_file.pdf;type=application/pdf"

🌐 LangGraph DAG Visualization

Requires graphviz:

brew install graphviz or sudo apt install graphviz

make graph        # ➜ creates graph_structure.dot
make view-graph   # ➜ generates graph.png and opens it

🧠 Agent Flow (Visual)

graph TD
    A[User Uploads PDF] --> B[File Loader Agent]
    B --> C[Text Chunker Agent]
    C --> D[Embedder Agent]
    D --> E[Retriever Agent]
    E --> F[Planner Agent]
    F --> G[Responder Agent]
    G --> H[Compliance Agent]
    H --> I[Verifier Agent]
    I --> J[Answer Returned to User]
Loading

πŸ“¦ Makefile Shortcuts

make install-deps     # pip install -r requirements.txt
make run              # Start the FastAPI app
make lint             # Lint the codebase
make format           # Format with black
make graph            # Generate graph_structure.dot
make view-graph       # Render and open graph.png
make gh-pr            # Raise PR to dev with GitHub CLI

πŸ” .env Example

OPENAI_API_KEY=sk-...
CHROMA_COLLECTION_NAME=agentic_docs

πŸ“‹ Roadmap

  • βœ… MVP Completed
  • πŸ”œ LangSmith tracing integration
  • πŸ”œ Frontend RAG Viewer
  • πŸ”œ HuggingFace / Azure provider abstraction
  • πŸ”œ Postgres persistence for retrieved chunks

🀝 Contributing

We welcome PRs! Follow the naming pattern:

# Feature branches
new{ftr}/compliance-filter

🧾 License

MIT Β© 2025 Deval Thakkar

About

🧠 Agentic AI Orchestrator: Modular multi-agent system with LangGraph, ChromaDB, OpenTelemetry

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published