π§ Agentic AI Orchestrator
Multi-agent orchestration engine built with LangGraph, LangChain, FastAPI, and ChromaDB. Modular. Scalable. Compliant. Document-aware
Agentic AI Orchestrator is a production-grade multi-agent engine enabling document-based RAG workflows with automated planning, response generation, and compliance validation. It leverages LangGraph DAGs to coordinate intelligent agents for PDF ingestion, QA, and policy checking β all through a single FastAPI endpoint.
agentic-ai-orchestrator/
βββ agents/ # Specialized LangChain agents
β βββ compliance.py # Compliance Agent
β βββ planner.py # Planning Agent
β βββ responder.py # Response generation Agent
β βββ retriever.py # Vector Retriever
β βββ verifier.py # Final answer verification
βββ chains/ # Custom LLM chains
βββ graph/ # LangGraph DAG definition
βββ orchestrate.py # Graph compilation logic
βββ scripts/ # Graph visualizer scripts
βββ app/ # FastAPI backend
βββ test/ # Unit/integration tests
βββ README.md # This file| Agent | Role |
|---|---|
| π§ Planner | Decides execution flow and agents/tools to use |
| π£οΈ Responder | Generates coherent LLM responses using context and intent |
| π Compliance | Applies policy/PII filters to prevent risky or non-compliant output |
| π Retriever | Fetches top-k document chunks from ChromaDB |
| β Verifier | Final step to verify answers are meaningful and integrity-safe |
- β PDF-first vector indexing with auto chunking
- π§ LangGraph multi-agent DAG orchestration
- π§Ύ FastAPI +
curl-ready backend - π Contextual retrieval with ChromaDB
- π Composable and extensible workflow
- π¨ Compliance guardrails with entity checkers
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txtmake run
# or
uvicorn app.main:app --reloadVisit: http://localhost:8000/docs
curl -X POST http://127.0.0.1:8000/run-agent \
-H "accept: application/json" \
-H "Content-Type: multipart/form-data" \
-F "user_input=Summarize the key traits Amazon expects from its leaders" \
-F "file=@path_to_file.pdf;type=application/pdf"Requires
graphviz:
brew install graphvizorsudo apt install graphviz
make graph # β creates graph_structure.dot
make view-graph # β generates graph.png and opens itgraph TD
A[User Uploads PDF] --> B[File Loader Agent]
B --> C[Text Chunker Agent]
C --> D[Embedder Agent]
D --> E[Retriever Agent]
E --> F[Planner Agent]
F --> G[Responder Agent]
G --> H[Compliance Agent]
H --> I[Verifier Agent]
I --> J[Answer Returned to User]
make install-deps # pip install -r requirements.txt
make run # Start the FastAPI app
make lint # Lint the codebase
make format # Format with black
make graph # Generate graph_structure.dot
make view-graph # Render and open graph.png
make gh-pr # Raise PR to dev with GitHub CLIOPENAI_API_KEY=sk-...
CHROMA_COLLECTION_NAME=agentic_docs- β MVP Completed
- π LangSmith tracing integration
- π Frontend RAG Viewer
- π HuggingFace / Azure provider abstraction
- π Postgres persistence for retrieved chunks
We welcome PRs! Follow the naming pattern:
# Feature branches
new{ftr}/compliance-filterMIT Β© 2025 Deval Thakkar