A pragmatic, hands-on course covering the transition of Large Language Models from passive sequence generators into autonomous decision-making agents. Based on "The Landscape of Agentic Reinforcement Learning for LLMs: A Survey" (arXiv:2509.02547), this course bridges theory to implementation with runnable code (Use with Google Colab or Jupyter Notebooks), practical examples, and industry-standard security practices.
Agentic-RL.mp4
- Paradigm Shift: From single-step preference-based reinforcement fine-tuning (PBRFT) to multi-step agent training (Agentic RL)
- Technical Foundation: Partially observable Markov Decision Process (POMDP) formalism enables planning, tool use, memory, and self-improvement
- Practical Focus: Every concept includes runnable implementation and evaluation benchmarks
- Security-First: Secure-by-design patterns throughout
# Check Python environment
python --version # Requires Python 3.8+
pip --version # Package management
# Install core dependencies
pip install torch transformers gymnasium numpy matplotlib
# Verify GPU availability (optional but recommended)
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
# Quick environment test
python -c "import gym; print('Environment setup complete!')"import gymnasium as gym
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel
class SimpleAgenticAgent:
"""Minimal agentic RL agent demonstrating core concepts"""
def __init__(self, model_name="distilbert-base-uncased"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.memory = [] # Simple episodic memory
def act(self, observation, tools_available=None):
"""Core agentic decision: text generation + tool selection"""
# Simple planning: consider observation + memory
context = f"Observation: {observation}\nMemory: {self.memory[-3:]}"
# Tokenize with input validation (security)
if len(context) > 512:
context = context[-512:] # Truncate safely
inputs = self.tokenizer(context, return_tensors="pt", truncation=True)
# Generate response (simplified)
with torch.no_grad():
outputs = self.model(**inputs)
# Action selection: [text_response, tool_call, confidence]
action = {
'text': "Based on observation, I should...",
'tool': tools_available[0] if tools_available else None,
'confidence': 0.8
}
# Update memory (learning)
self.memory.append({'obs': observation, 'action': action})
return action
# Demo usage
agent = SimpleAgenticAgent()
result = agent.act("User asks: What's 2+2?", tools_available=['calculator'])
print(f"Agent decision: {result}")Foundation (Weeks 1-4) Implementation (Weeks 5-8)
┌─────────────────────┐ ┌─────────────────────┐
│ MDP/POMDP Theory │───────►│ RAG Systems │
│ Context Assembly │ │ Memory Agents │
│ Reward Design │ │ Tool Integration │
│ Algorithm Basics │ │ Multi-Agent │
└─────────────────────┘ └─────────────────────┘
│ │
▼ ▼
┌─────────────────────┐ ┌─────────────────────┐
│ Capability Training │ │ Frontier Research │
│ Planning, Memory │◄───────┤ Scaling Challenges │
│ Tool Use, Reasoning │ │ Safety & Trust │
│ Self-Improvement │ │ Future Directions │
└─────────────────────┘ └─────────────────────┘
- Paradigm shift from LLM-RL to Agentic RL
- Survey overview and research landscape
- 2.1 Markov Decision Processes
- 2.2 Environment State
- 2.3 Action Space
- 2.4 Transition Dynamics
- 2.5 Reward Function
- 2.6 Learning Objective
- 2.7 RL Algorithms
- 4.1 Search & Research Agent
- 4.2 Code Agent
- 4.3 Mathematical Agent
- 4.4 GUI Agent
- 4.5 Vision Agents
- 4.6 Embodied Agents
- 4.7 Multi-Agent Systems
- 4.8 Other Tasks
- Synthesis and next steps
By completion, you will:
- Formalize agentic RL using MDP/POMDP mathematics
- Implement core capabilities: planning, memory, tool use, reasoning
- Build practical agents for code, math, GUI, and search tasks
- Evaluate using industry-standard benchmarks and environments
- Deploy secure, scalable agentic systems in production
- Survey Paper: The Landscape of Agentic Reinforcement Learning for LLMs
- Paper Collection: Awesome AgenticLLM-RL Papers
- Institutions: University of Oxford, Shanghai AI Laboratory, National University of Singapore
- Core Libraries:
torch,transformers,gymnasium,numpy - Evaluation: Standard benchmarks (SWE-Bench, GAIA, WebArena)
- Security: Input validation, sandbox execution, permission systems
See CONTRIBUTING.md for development guidelines, security requirements, and submission processes.
MIT License - Open source, industry-standard.
This course bridges 500+ research papers into practical, secure, production-ready implementations. Start with the Quick Start demo above, then proceed to Module 1