Skip to content
View davidfertube's full-sized avatar

Block or report davidfertube

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
davidfertube/README.md
Typing SVG
01001000 01100101 01101100 01101100 01101111 00101100 00100000 01010111 01101111 01110010 01101100 01100100

Portfolio LinkedIn X HuggingFace


> Building Production AI Systems for Energy & Industrial Operations_

Founding Engineer scaling AI from prototype to production. I architect agentic RAG systems, predictive ML pipelines, and compliance automation that run in enterprise environments.

class AIEngineer:
    def __init__(self):
        self.focus = [
            "Agentic RAG & Multi-Agent Orchestration",
            "Regulatory Compliance Automation",
            "Cloud-Native ML (Azure AI Foundry, GCP Vertex AI)"
        ]

    def deploy(self, agent) -> Production:
        return agent.scale_to_enterprise()

Ventures

AI-powered RAG system for querying steel specifications with traceable citations. Query NACE MR0175, ASTM, and API standards instantly with answers engineers can cite in compliance reports.

Next.js 16 • React 19 • TypeScript • Supabase pgvector • Voyage AI • Groq • Vercel

Production-ready MLOps platform monitoring 10 compressor units across 4 Texas stations. PySpark ETL pipelines process 50k+ sensor readings through a Bronze/Silver/Gold medallion architecture into real-time fleet health dashboards.

PySpark • Delta Lake • PostgreSQL • Streamlit • Plotly • Docker • Terraform

Experiments

experiments/
├── predictive-agent/    # LSTM-based RUL prediction for turbines
├── compliance-agent/    # NERC CIP compliance automation
├── anomaly-agent/       # Real-time turbine anomaly detection
└── vision-agent/        # VLM for HSE compliance (Qwen2-VL)
Experiment Stack Code Demo
Predictive Agent LSTM • Scikit-Learn • Plotly • Docker Code Demo
Compliance Agent PydanticAI • DSPy • Mistral • FastAPI Code Demo
Anomaly Agent Isolation Forest • Gradio • Time-Series Code Demo
Vision Agent Qwen2-VL • Transformers • Gradio Code Demo

Open Source Contributions

+ LangGraph    → Refactored FunctionMessage patterns, Enhanced fine-tuning docs
+ Pydantic     → Core library contributions
+ AutoGen      → Fixed Azure AI Client streaming stability
+ CrewAI       → URL validation for Azure Gateways
+ Transformers → Documentation improvements

LangGraph Pydantic AutoGen CrewAI


Technical Stack

┌────────────────────────────────────────────────────────────────────────────────────────────────────┐
│  AI/ML                                                                                             │
│  ├── LLMs: OpenAI, Claude, Gemini, Mistral                                                        │
│  ├── Agents: LangGraph, AutoGen, CrewAI, PydanticAI                                               │
│  ├── Vector DBs: Pinecone, ChromaDB, FAISS, Azure AI Search                                       │
│  └── MLOps: MLflow, W&B, Model Monitoring                                                         │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Infrastructure                                                                                    │
│  ├── Cloud: Azure AI Foundry, GCP Vertex AI, AWS SageMaker                                        │
│  ├── Containers: Docker, Kubernetes (AKS/GKE)                                                     │
│  └── IaC: Terraform, GitHub Actions                                                               │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Domain                                                                                            │
│  ├── Power: CCGT, Gas Turbines, SCADA/Historian                                                   │
│  ├── Grid: ERCOT, ISO Markets, Dispatch Optimization                                              │
│  └── Regulatory: NERC CIP, EPA Emissions, Safety Compliance                                       │
└────────────────────────────────────────────────────────────────────────────────────────────────────┘

Background

M.S. Artificial Intelligence

University of Colorado Boulder — Expected 2027

Experience

5+ years production software · 3+ years building AI systems

Started as a founding engineer scaling a startup from zero to production. Now I build AI that operators trust with million-dollar equipment decisions.

Pinned Loading

  1. portfolio portfolio Public

    AI Engineer Portfolio | davidfernandez.dev

    TypeScript