Authors: Clijo JOSE and Oliver HANNAOUI
This project performs a comprehensive time series analysis of the Wine Industrial Production Index (IPI) data from INSEE (Institut national de la statistique et des études économiques). The analysis includes data exploration, trend detection, stationarity testing, ARMA/ARMAX modelling, and forecasting.
rproj/
├── main.R # Main analysis script
├── figures/ # Generated plots
├── tables/ # Generated LaTeX tables
├── report.pdf # Project report
├── LICENSE # MIT License
└── README.md # This file
The following R packages are required and will be automatically installed if missing:
zoo- Time series infrastructuretidyverse- Data manipulation and visualizationtseries- Time series analysisforecast- Forecasting functionstsoutliers- Outlier detectioninsee- INSEE data accessgridExtra- Grid graphicsstrucchange- Structural change detectionellipse- Ellipse plottingFinTS- Financial time seriesnortest- Normality testsknitr- Table generation
The script performs three main parts:
- Downloads Wine IPI data from INSEE (ID: 010767676)
- Performs trend regression analysis
- Detects structural breakpoints using Bai-Perron test
- Generates summary statistics across different periods
- Creates visualizations of the original and break-adjusted series
- Tests for stationarity (ADF, PP, KPSS tests)
- Examines ACF and PACF plots
- Fits multiple ARMA models and evaluates them
- Performs residual diagnostics
- Fits ARMAX model with outlier detection
- Compares ARMA and ARMAX model performance
- Generates 2-step ahead forecasts using AR(1) model
- Creates forecast plots with confidence intervals
- Visualizes forecast uncertainty using confidence ellipses
raw_ts_plot.png- Original and break-adjusted time seriesbp_bic_rss_plot.png- Breakpoint selection criteriats_comparison.png- Comparison of original and adjusted seriesACF_PACF.png- Autocorrelation and partial autocorrelation functionsARMA_1_0_residual_diagnostics_plt.png- Residual diagnostic plotsARMAX_1_0_residual_hist.png- ARMAX residual histogramfitted_series_comparison.png- ARMA vs ARMAX fitted valuesAR1_forecast.png- Forecast visualizationconfidence_elipse.png- Forecast confidence ellipse
ols_trend_regression.tex- OLS trend regression resultssummary_stats_by_period.tex- Summary statistics by periodstationarity_tests.tex- Stationarity test resultsarma_well_adjusted_valid.tex- ARMA model evaluationarma_coefficients_all.tex- ARMA model coefficientsARMA_1_0_residual_diagnostics_tbl.tex- Residual diagnosticsARMA_1_0_coefficients.tex- ARMA(1,0) coefficientsARMA_1_0_performance.tex- ARMA(1,0) performance metricsARMA_0_4_performance.tex- ARMA(0,4) performance metricsARMAX_1_0_coefficients.tex- ARMAX coefficientsARMAX_1_0_performance.tex- ARMAX performance metrics
Data is retrieved from INSEE using the insee package. The specific series used is Wine IPI (ID: 010767676).
This project is licensed under the MIT License - see the LICENSE file for details.