Skip to content

c9py/skipl-253

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

108 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

p235

This repository contains collections of design patterns and organizational metaphors with formal specifications, including a virtual hardware implementation (NPU-253) for accelerated pattern operations, an APL language implementation for array-based pattern analysis, a Skill Framework for generalized pattern-based workflows, and an Optimal Grip Implementation for cognitive-aware pattern exploration.

🎯 NEW: Optimal Grip Implementation

Cognitive "optimal grip" on the gestalt salience landscape - A complete multi-layer implementation featuring:

  • πŸ” Datalog Query Layer: Declarative pattern discovery and relationship inference
  • 🧠 ML Salience Engine: Context-aware relevance scoring and gestalt detection
  • 🎨 Interactive D3.js Visualization: Force-directed graph explorer with real-time filtering
  • 🌐 REST API: FastAPI-based endpoints for programmatic access
  • πŸ“Š Emergence Tracking: Detect synergistic pattern combinations

Quick Start:

# Install dependencies
pip install pyDatalog numpy fastapi uvicorn

# Start the API
python3 pattern_api.py

# Open visualization (in browser)
# file:///path/to/pattern_explorer.html

Documentation:

Features:

  • 🎯 Context-aware pattern salience scoring
  • πŸ”— Gestalt pattern detection (emergent groupings)
  • πŸ“ˆ Emergence tracking in pattern sequences
  • πŸ” Declarative Datalog queries with inference
  • 🎨 Interactive force-directed graph visualization
  • 🌐 RESTful API with 7 endpoints
  • πŸ“Š Multi-scale perception (Towns β†’ Buildings β†’ Construction)

Try it now:

# Demo the salience engine
python3 pattern_salience_engine.py

# Demo Datalog queries
python3 demo_datalog_queries.py

# Start API and open pattern_explorer.html in browser
python3 pattern_api.py

πŸ€– Agent Invocation System: Collaborative Pattern Intelligence

NEW: All 4,836 agents in the .github/agents/apl0/ hierarchy are now configured for cross-invocation, enabling sophisticated multi-agent collaboration!

User β†’ @apl0/dim2 (Physical dimension agent)
  ↓ delegates to
@apl0/dim2/cat1 (Towns category agent)
  ↓ delegates to
@apl0/dim2/cat1/seq01 (Regional planning sequence)
  ↓ delegates to
@apl0/dim2/cat1/seq01/apl001 (INDEPENDENT REGIONS pattern)

Features:

  • πŸ€– 4,836 Specialized Agents across 6 dimensions, 18 categories, 216 sequences
  • πŸ”— Cross-Invocation Protocol: Any agent can invoke any other agent
  • πŸ“‹ Standardized Context Passing: Consistent format for task delegation
  • 🎯 Hierarchical Delegation: Agents delegate to appropriate specialists
  • 🌐 Multi-Dimensional Views: Same pattern from physical/social/conceptual/psychic perspectives
  • 🧭 Navigation Support: Context agents help navigate pattern hierarchy

Agent Types:

  • Dimension Agents (6) - Coordinate entire dimensions
  • Category Agents (18) - Coordinate scale-specific work
  • Sequence Agents (216) - Manage emergent phenomena
  • Pattern Agents (1,555+) - Provide specific pattern guidance
  • Context Agents (3,041+) - Navigate broader/narrower relationships

Documentation:

Standard Context Format:

I am working on [task description].
So far I have [summary of work done].
I need help with [specific question] because [reason].
Constraints: [any limitations or requirements]
Related patterns in use: [list of pattern IDs]

Example Invocations:

# Get help with town design
@apl0/dim2/cat1 β†’ Category agent for town-scale patterns

# Understand a specific pattern
@apl0/dim2/cat1/seq01/apl001 β†’ INDEPENDENT REGIONS pattern

# Find what comes next
@apl0/dim2/cat1/seq01/apl001/narrower β†’ Next patterns in hierarchy

# Multi-dimensional view
@apl0/dim2/.../apl028 (Physical)
@apl0/dim3/.../apl028 (Social)
@apl0/dim4/.../apl028 (Conceptual)

Validation:

python3 validate_agent_invocation.py
# βœ“ All 4,836 agent files validated

πŸš€ Skill Framework: Pattern-Based Workflow System

NEW: Generalized framework for implementing sequences of skills as ordered routines defined by algorithmic workflows!

from skill_framework import Skill, SequenceBuilder, SkillWorkflow, WorkflowEngine

# Create skills from patterns
skill1 = Skill("apl1", "Independent Regions", "Design autonomous regions")
skill2 = Skill("apl2", "Distribution of Towns", "Balance urban settlements")

# Build sequence
sequence = (SequenceBuilder("regional", "Regional Planning")
           .add_skill(skill1)
           .add_skill(skill2)
           .build())

# Execute workflow
context = SkillContext(domain="physical")
results = sequence.execute(context)

Features:

  • 🎯 Domain-agnostic skill execution (physical/social/conceptual/psychic)
  • πŸ”„ Sequential and conditional workflow modes
  • βœ… Preconditions and postconditions validation
  • πŸ“Š State management with scoped variables
  • 🌐 Domain transformation support
  • πŸ”— Integration with pattern sequences and NPU-253
  • βœ… 17 passing tests

Documentation:

# Run demo
python3 demo_skill_framework.py

# Run tests
python3 test_skill_framework.py

# Run integration examples
python3 integration_examples.py

🎯 Meta-Recursive Achievement

NEW: This repository now applies Pattern Language principles to itself, creating a living example of patterns in action!

The repository structure embodies the patterns it documents, achieving optimal cognitive grip on the gestalt through self-application.

πŸš€ NPU-253: Neural Processing Unit / Natural Patterning Unit

NEW: Virtual hardware device implementing the 253-pattern language as a memory-mapped coprocessor!

from npu253 import PatternCoprocessorDriver, NPUConfig

npu = PatternCoprocessorDriver(NPUConfig())
npu.load()

# Query patterns
pattern = npu.query_by_id(1)
print(f"{pattern.name}: {pattern.solution}")

# Domain transformation
social = npu.transform_pattern("12610010", "social")

Features:

  • πŸ”§ Hardware-style MMIO register interface
  • 🎯 253 APL patterns + 253 archetypal patterns
  • πŸ”„ Domain transformation (physical/social/conceptual/psychic)
  • ⚑ LRU caching for performance
  • πŸ“Š Telemetry and diagnostics
  • βœ… 34 passing tests

Documentation:

# Run demo
python3 demo_npu253.py

# Run tests
python3 test_npu253.py

πŸ”’ APL Language Implementation

NEW: Array-based implementation in APL (A Programming Language)!

APL is a powerful array-oriented language perfect for pattern analysis and transformations. This implementation leverages APL's concise array operations for efficient pattern queries.

⍝ Query patterns by category
towns ← GetTownPatterns

⍝ Transform archetypal pattern to domain
social ← TransformToSocial pattern

⍝ Find pattern relationships
connected ← GetAllConnectedPatterns 1

Features:

  • ✨ 253 patterns as array-based data structures
  • πŸ” Fast array-based queries and filters
  • πŸ”„ Domain transformations (physical/social/conceptual/psychic)
  • πŸ”— Relationship navigation and path finding
  • πŸ“Š Pattern sequences and statistics
  • 🎯 ~1,900 lines of APL code

Documentation:

# Run tests
python3 test_apl_implementation.py

# Generate data
python3 generate_apl_data.py

APL Files:

  • patterns.apl - Core pattern data structures
  • queries.apl - Search and query operations
  • transformations.apl - Domain transformations
  • relationships.apl - Pattern relationship navigation
  • demo.apl - Interactive demonstrations
  • data_loader.apl - Pattern data initialization

πŸ”„ Meta-Recursive Organization

Patterns Applied to Repository Structure:

This repository uses Pattern Language principles to organize itself:

Navigation & Access

Integration & Understanding

Cognitive Achievement

  • βœ… Multi-scale perception: Navigate repository β†’ region β†’ sequence β†’ pattern
  • βœ… Relationship richness: Clear connections between all elements
  • βœ… Contextual relevance: Find patterns by domain/context/need
  • βœ… Gestalt perception: See the whole as living system
  • βœ… Optimal grip: Structure supports understanding

The repository is both documentation of patterns and example of patterns in use.

πŸ“– Documentation

For Contributors & AI Assistants

Formal Specifications

  • Formal Specification Summary - Complete overview of architecture and Z++ specifications
  • docs/ - Comprehensive technical documentation (2,328 lines)
    • Architecture overview with Mermaid diagrams
    • Z++ formal specifications (data model, system state, operations, integrations)
    • Usage guide for specifications

Pattern Collections

  • APL: Christopher Alexander's "A Pattern Language" (253 patterns) - architectural and urban design patterns
  • UIA: Union of International Associations "Patterns & Metaphors" (253 patterns) - organizational and conceptual patterns

Markdown Versions

The markdown/ directory contains converted versions of all APL and UIA pages in markdown format for improved readability and accessibility:

  • markdown/apl/: 253 A Pattern Language patterns (apl001.md - apl253.md)
  • markdown/uia/: 253 UIA Patterns & Metaphors (12610010.md - 12612530.md)
  • markdown/arc/: 102 Archetypal Patterns extracted from UIA templates with domain-specific placeholders

See markdown/README.md for detailed information about the conversion process and markdown structure.

Pattern Language Schema

The repository includes formalized JSON schemas for both the Pattern Language and Archetypal Patterns:

APL Pattern Language Schema

  • Pattern Language Schema (pattern_language_generated.json) - Complete meta-pattern, categories, and sequences
  • Pattern Sequences (pattern_sequences.json) - All 36 pattern sequences with emergent phenomena
  • Categories (category_*.json) - Towns, Buildings, and Construction categories

See PATTERN_SCHEMA_README.md for detailed information about the APL schema structure.

Archetypal Pattern Schema

  • Archetypal Pattern Schema (archetypal_pattern_schema.json) - JSON schema for archetypal patterns
  • Archetypal Patterns (archetypal_patterns.json) - All 102 archetypal patterns with domain mappings
  • Placeholder Reference (archetypal_placeholders.json) - Complete placeholder documentation

Archetypal patterns use the format: "generic {{domain-specific}} generic" and can be transformed across:

  • Physical - Spatial, material, architectural domains
  • Social - Organizational, community, institutional domains
  • Conceptual - Knowledge, theoretical, paradigmatic domains
  • Psychic - Awareness, consciousness, mental domains

See ARCHETYPAL_SCHEMA_README.md for detailed information about the archetypal pattern schema.

Generating Schemas

# Generate APL Pattern Language schema
python3 generate_pattern_schema.py

# Generate Archetypal Pattern schema
python3 generate_archetypal_schema.py

Testing Schemas

# Test APL schema (if tests exist)
python3 validate_schema.py

# Test Archetypal schema
python3 test_archetypal_schema.py

Demo Schemas

# Demo APL schema
python3 demo_pattern_schema.py

# Demo Archetypal schema
python3 demo_archetypal_schema.py

OpenCog Atomese Representation

The Pattern Language has been converted to OpenCog's Atomese format for knowledge representation and pattern matching:

  • opencog_atomese/ - Complete Atomese hypergraph representation in Scheme format
    • pattern_language.scm - Complete representation
    • meta_pattern.scm - Meta-pattern
    • categories.scm - Categories with InheritanceLinks
    • sequences.scm - Sequences with MemberLinks
    • Enhanced Features:
      • pattern_language_enhanced.scm - Enhanced with diagrams, details, and connections
      • relationship_types.scm - Pattern relationship types (complement, conflict, alternative)
      • patterns/ - Individual .scm files for modular loading

The Atomese format enables:

  • Pattern matching and reasoning in OpenCog
  • Hypergraph queries for pattern relationships
  • Knowledge graph navigation and inference
  • Integration with AI/AGI systems

See opencog_atomese/README.md for usage examples and opencog_atomese/ENHANCEMENTS.md for enhanced features documentation.

Paradigm & Language Analysis

Comprehensive analysis of optimal implementation approaches for achieving cognitive "optimal grip" on the gestalt salience landscape:

  • PARADIGM_LANGUAGE_ANALYSIS.md - Complete paradigm and language evaluation

    • Analysis of 6 programming paradigms (hypergraph, functional, logic, OOP, constraint, agent-based)
    • Evaluation of 6+ languages (Scheme, Datalog, Python, Haskell, JavaScript, Prolog)
    • Cognitive affordances mapping
    • Recommended multi-layer architecture
  • IMPLEMENTATION_GUIDE.md - Practical implementation guide

    • Concrete code examples for each layer
    • Datalog query system integration
    • Haskell domain transformation engine
    • Python salience computation
    • D3.js visualization framework
  • PARADIGM_COMPARISON_MATRIX.md - Detailed comparison matrices

    • Cognitive requirements vs paradigms matrix
    • Implementation tasks vs languages matrix
    • Paradigm synergy analysis
    • Use-case specific recommendations

Key Finding: Multi-paradigm approach required - Hypergraph (Scheme/OpenCog) foundation + Datalog queries + Functional transformations (Haskell) + Python integration + JavaScript visualization provides optimal cognitive affordances.

Generating Atomese Files

# Generate base Atomese files
python3 generate_opencog_atomese.py

# Generate enhanced features
python3 generate_enhanced_atomese.py

Testing Atomese Files

# Test base files
python3 test_opencog_atomese.py

# Test enhanced features
python3 test_enhanced_atomese.py

Demo Enhanced Features

python3 demo_enhanced_atomese.py

Demo Query System

# Demo Datalog query integration (requires pyDatalog)
pip install pyDatalog
python3 demo_datalog_queries.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •