This repository contains my learning journey with Gaussian Process Regression, organized into three main sections:
- Basic statistical concepts
- Bayesian statistics fundamentals
- Probability distributions
- Simulation-based inference
- Computational methods
- GP fundamentals
- Simple GP implementations
- Medium complexity GPR models
- Advanced techniques (gradient-enhanced kriging)
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.

