Skip to content

bydeng01/new2GPR

Repository files navigation

This repository contains my learning journey with Gaussian Process Regression, organized into three main sections:

Multi-output GP Demo TwoDim-input GP Demo

Directory Structure

01_statistics_foundations/

  • Basic statistical concepts
  • Bayesian statistics fundamentals
  • Probability distributions

02_simulation_methods/

  • Simulation-based inference
  • Computational methods

03_gaussian_processes/

  • GP fundamentals
  • Simple GP implementations
  • Medium complexity GPR models
  • Advanced techniques (gradient-enhanced kriging)

Reference

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.