Skip to content

TradingAgents is a Python framework for multi-agent LLM financial trading, enabling collaborative market analysis and decision-making with specialized AI agents.

Notifications You must be signed in to change notification settings

basedalien/trading-agents

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

arXiv Discord WeChat X Follow
Community

TradingAgents: Multi-Agents LLM Financial Trading Framework

News

  • [2026-02] TradingAgents v0.2.0 released with multi-provider LLM support (GPT-5.x, Gemini 3.x, Claude 4.x, Grok 4.x) and improved system architecture.
  • [2026-01] Trading-R1 Technical Report released, with Terminal expected to land soon.

Download Latest Release

Version: v3.3.0

Platform Architecture Download
Windows x64 Download

View All Releases


🎉 TradingAgents officially released! We have received numerous inquiries about the work, and we would like to express our thanks for the enthusiasm in our community.

So we decided to fully open-source the framework. Looking forward to building impactful projects with you!

🚀 TradingAgents | ⚡ Installation & CLI | 🎬 Demo | 📦 Package Usage | 🤝 Contributing | 📄 Citation

TradingAgents Framework

TradingAgents is a multi-agent trading framework that mirrors the dynamics of real-world trading firms. By deploying specialized LLM-powered agents: from fundamental analysts, sentiment experts, and technical analysts, to trader, risk management team, the platform collaboratively evaluates market conditions and informs trading decisions. Moreover, these agents engage in dynamic discussions to pinpoint the optimal strategy.

TradingAgents framework is designed for research purposes. Trading performance may vary based on many factors, including the chosen backbone language models, model temperature, trading periods, the quality of data, and other non-deterministic factors. It is not intended as financial, investment, or trading advice.

Our framework decomposes complex trading tasks into specialized roles. This ensures the system achieves a robust, scalable approach to market analysis and decision-making.

Analyst Team

  • Fundamentals Analyst: Evaluates company financials and performance metrics, identifying intrinsic values and potential red flags.
  • Sentiment Analyst: Analyzes social media and public sentiment using sentiment scoring algorithms to gauge short-term market mood.
  • News Analyst: Monitors global news and macroeconomic indicators, interpreting the impact of events on market conditions.
  • Technical Analyst: Utilizes technical indicators (like MACD and RSI) to detect trading patterns and forecast price movements.

Researcher Team

  • Comprises both bullish and bearish researchers who critically assess the insights provided by the Analyst Team. Through structured debates, they balance potential gains against inherent risks.

Trader Agent

  • Composes reports from the analysts and researchers to make informed trading decisions. It determines the timing and magnitude of trades based on comprehensive market insights.

Risk Management and Portfolio Manager

  • Continuously evaluates portfolio risk by assessing market volatility, liquidity, and other risk factors. The risk management team evaluates and adjusts trading strategies, providing assessment reports to the Portfolio Manager for final decision.
  • The Portfolio Manager approves/rejects the transaction proposal. If approved, the order will be sent to the simulated exchange and executed.

Installation and CLI

Installation

📥 Download from Releases

Install dependencies:

pip install -r requirements.txt

Required APIs

TradingAgents supports multiple LLM providers. Set the API key for your chosen provider:

export OPENAI_API_KEY=...          # OpenAI (GPT)
export GOOGLE_API_KEY=...          # Google (Gemini)
export ANTHROPIC_API_KEY=...       # Anthropic (Claude)
export XAI_API_KEY=...             # xAI (Grok)
export OPENROUTER_API_KEY=...      # OpenRouter
export ALPHA_VANTAGE_API_KEY=...   # Alpha Vantage

For local models, configure Ollama with llm_provider: "ollama" in your config.

Alternatively, copy .env.example to .env and fill in your keys:

cp .env.example .env

CLI Usage

You can also try out the CLI directly by running:

python -m cli.main

You will see a screen where you can select your desired tickers, date, LLMs, research depth, etc.

An interface will appear showing results as they load, letting you track the agent's progress as it runs.

TradingAgents Package

Implementation Details

We built TradingAgents with LangGraph to ensure flexibility and modularity. The framework supports multiple LLM providers: OpenAI, Google, Anthropic, xAI, OpenRouter, and Ollama.

Python Usage

To use TradingAgents inside your code, you can import the tradingagents module and initialize a TradingAgentsGraph() object. The .propagate() function will return a decision. You can run main.py, here's also a quick example:

from tradingagents.graph.trading_graph import TradingAgentsGraph
from tradingagents.default_config import DEFAULT_CONFIG

ta = TradingAgentsGraph(debug=True, config=DEFAULT_CONFIG.copy())

# forward propagate
_, decision = ta.propagate("NVDA", "2026-01-15")
print(decision)

You can also adjust the default configuration to set your own choice of LLMs, debate rounds, etc.

from tradingagents.graph.trading_graph import TradingAgentsGraph
from tradingagents.default_config import DEFAULT_CONFIG

config = DEFAULT_CONFIG.copy()
config["llm_provider"] = "openai"        # openai, google, anthropic, xai, openrouter, ollama
config["deep_think_llm"] = "gpt-5.2"     # Model for complex reasoning
config["quick_think_llm"] = "gpt-5-mini" # Model for quick tasks
config["max_debate_rounds"] = 2

ta = TradingAgentsGraph(debug=True, config=config)
_, decision = ta.propagate("NVDA", "2026-01-15")
print(decision)

See tradingagents/default_config.py for all configuration options.

Contributing

We welcome contributions from the community! Whether it's fixing a bug, improving documentation, or suggesting a new feature, your input helps make this project better. If you are interested in this line of research, please consider joining our open-source financial AI research community Tauric Research.

seo:
tradingagents llm financial trading framework github multi agent trading system ai trading bot open source trading agents python trading agents installation trading agents download windows trading agents cli usage trading agents package python trading agents demo youtube trading agents langchain trading agents llm providers trading agents openai google gemini anthropic claude xai grok openrouter ollama trading agents technical analysis sentiment analysis fundamental analysis risk management portfolio management trading agents research paper arxiv trading agents citation trading agents contribute tauric research financial ai trading agents download release trading agents configuration trading agents api keys alpha vantage trading agents cli example trading agents notebook trading agents tutorial trading agents advanced usage trading agents custom config trading agents debata rounds trading agents llm models trading agents deep think llm quick think llm trading agents nvda stock trading agents 2026 trading agents 2025 trading agents multi provider llm support trading agents system architecture trading agents trading r1 technical report trading agents terminal release trading agents open source framework trading agents community github trading agents discord trading agents wechat trading agents x twitter trading agents github community discourse