Skip to content

Toolkit to package and deploy reinforcement learning environments and agents inside reproducible containers

License

Notifications You must be signed in to change notification settings

alexpalms/containerl

Repository files navigation

ContaineRL

Blog Post

Latest Tag Pypi version

Code Checks Pytest PytestCoverage

Supported OS Python Version Latest Repo Update

License

ContaineRL

Containerize your RL Environments and Agents

Overview

ContaineRL is a toolkit to package and deploy reinforcement-learning (RL) environments and agents inside reproducible containers. It provides a compact Python API and a command-line interface (entry point: containerl-cli) to manage environment/agent lifecycles, build artifacts, and integrate with gRPC/msgpack-based interfaces.

Repository Structure

containerl/
├── examples/                 # Example agents and environments
├── src/
│   └── containerl/           # (Package root)
│       ├── interface/        # Proto/gRPC bindings and transport abstractions
│       │   ├── agent/        # Agent client/server interface
│       │   └── environment/  # Environment client/server interface
│       └── cli.py            # CLI entry point (containerl.cli:main)
└── tests/
    ├── unit/                 # Fast, isolated unit tests (no external services)
    └── integration/          # Slower tests that exercise containers, gRPC

Installation

Official release install

uv pip install containerl

Installation from source

Requirements

Clone repo and install it:

uv sync
# OR
uv sync --group examples # for examples dependencies

This installs the containerl-cli console script (defined in pyproject.toml) and dev tools (pyright, pytest, ruff, etc.).

Quickstart (Python Package)

ContaineRL provides simple abstractions to expose RL environments and agents as containerized services.

Exposing an Environment

Wrap your environment class (Gymnasium-compatible) and expose it via gRPC:

import gymnasium as gym
from containerl import AllowedTypes, AllowedInfoValueTypes, create_environment_server

class Environment(gym.Env):
    def __init__(self, render_mode: str, env_name: str):
        self._env = gym.make(env_name, render_mode=render_mode)
        self.observation_space = gym.spaces.Dict({"observation": self._env.observation_space})
        self.action_space = self._env.action_space

    def reset(self, *, seed=None, options=None):
        obs, info = self._env.reset(seed=seed, options=options)
        return {"observation": obs}, info

    def step(self, action):
        obs, reward, terminated, truncated, info = self._env.step(action)
        return {"observation": obs}, float(reward), terminated, truncated, info

if __name__ == "__main__":
    create_environment_server(Environment)

Run this script as your Docker container entrypoint. The server listens on port 50051 by default.

Exposing an Agent

Implement the CRLAgent interface and expose it via gRPC:

import numpy as np
from gymnasium import spaces
from containerl import CRLAgent, AllowedTypes, create_agent_server

class Agent(CRLAgent):
    def __init__(self, target: float, gain: float):
        self.target = target
        self.gain = gain
        self.observation_space = spaces.Dict({"state": spaces.Box(0, 100, shape=(1,))})
        self.action_space = spaces.Box(0, 10, shape=(1,), dtype=np.float32)

    def get_action(self, observation: dict[str, AllowedTypes]) -> AllowedTypes:
        return np.clip(self.gain * (self.target - observation["state"]), 0, 10)

if __name__ == "__main__":
    create_agent_server(Agent)

Both create_environment_server and create_agent_server handle initialization arguments passed via gRPC, spawn the service, and manage the lifecycle automatically.

See more examples provided with the repository in the examples/ directory.

Quickstart (CLI)

Show help and global options:

uv run containerl-cli --help

Common, supported commands (see --help for full options):

Build a Docker image from a directory containing a Dockerfile:

uv run containerl-cli build ./examples/gymnasium/environments/atari/ -n my-image -t v1

Run a built image (maps container port 50051 to host by default):

# Run with explicit image name
uv run containerl-cli run my-image:v1

# Run with a custom container name (only when count=1)
uv run containerl-cli run my-image:v1 --name my-container

# Run multiple containers
uv run containerl-cli run my-image:v1 --count 3

# Run in interactive mode (only when count=1)
uv run containerl-cli run my-image:v1 -i

Test connection to a running container:

# Test with initialization arguments
uv run containerl-cli test --address localhost:50051 \
  --init-arg render_mode="rgb_array" \
  --init-arg env_name="ALE/Breakout-v5" \
  --init-arg obs_type="ram"

Build an image and run containers from it:

uv run containerl-cli build-run ./examples/gymnasium/environments/atari/

# With a custom container name
uv run containerl-cli build-run ./examples/gymnasium/environments/atari/ --container-name my-env

Build, run and test a container (invokes client checks):

# With initialization arguments (supports int, float, bool, and string values)
uv run containerl-cli build-run-test ./examples/gymnasium/environments/atari/ \
  --init-arg render_mode="rgb_array" \
  --init-arg env_name="ALE/Breakout-v5" \
  --init-arg obs_type="ram"

Stop containers by image or by name:

# Stop all containers started from a given image
uv run containerl-cli stop --image my-image:v1

# Stop container(s) by name
uv run containerl-cli stop --name my-container

The CLI subcommands implemented are: build, run, test, stop, build-run, and build-run-test. Use containerl-cli <command> --help for command-specific flags.

Important notes:

  • The default image name is containerl-build:latest (used when no name is specified in build or run commands)
  • Container naming (--name for run, --container-name for build-run/build-run-test), volume mounting (--volume), interactive mode (-i), and attach mode (-a) are only available when --count 1 (the default)
  • The stop command requires either --image or --name but not both
  • Initialization arguments (--init-arg key=value) can be passed to test and build-run-test commands to configure the environment or agent. Multiple init args can be specified, and values are automatically converted to int, float, bool, or string types

Testing strategy (unit vs integration)

The repository separates tests into two folders: tests/unit/ and tests/integration/ to speed up the inner development loop and to make CI scheduling simpler.

Unit tests: fast, deterministic, no network or container dependencies. Run quickly on every commit:

pytest tests/unit

Integration tests: exercise containers, gRPC interfaces, or external services. Run them less frequently or in dedicated CI jobs:

pytest tests/integration

License & Contact

This project is MIT licensed. For questions or issues open an issue at the repository or contact the maintainer listed in pyproject.toml.

Containerize your RL Environments and Agents

About

Toolkit to package and deploy reinforcement learning environments and agents inside reproducible containers

Topics

Resources

License

Stars

Watchers

Forks