Containerize your RL Environments and Agents
ContaineRL is a toolkit to package and deploy reinforcement-learning (RL) environments and agents inside reproducible containers. It provides a compact Python API and a command-line interface (entry point: containerl-cli) to manage environment/agent lifecycles, build artifacts, and integrate with gRPC/msgpack-based interfaces.
containerl/
├── examples/ # Example agents and environments
├── src/
│ └── containerl/ # (Package root)
│ ├── interface/ # Proto/gRPC bindings and transport abstractions
│ │ ├── agent/ # Agent client/server interface
│ │ └── environment/ # Environment client/server interface
│ └── cli.py # CLI entry point (containerl.cli:main)
└── tests/
├── unit/ # Fast, isolated unit tests (no external services)
└── integration/ # Slower tests that exercise containers, gRPCuv pip install containerl
Clone repo and install it:
uv sync
# OR
uv sync --group examples # for examples dependenciesThis installs the containerl-cli console script (defined in pyproject.toml) and dev tools (pyright, pytest, ruff, etc.).
ContaineRL provides simple abstractions to expose RL environments and agents as containerized services.
Wrap your environment class (Gymnasium-compatible) and expose it via gRPC:
import gymnasium as gym
from containerl import AllowedTypes, AllowedInfoValueTypes, create_environment_server
class Environment(gym.Env):
def __init__(self, render_mode: str, env_name: str):
self._env = gym.make(env_name, render_mode=render_mode)
self.observation_space = gym.spaces.Dict({"observation": self._env.observation_space})
self.action_space = self._env.action_space
def reset(self, *, seed=None, options=None):
obs, info = self._env.reset(seed=seed, options=options)
return {"observation": obs}, info
def step(self, action):
obs, reward, terminated, truncated, info = self._env.step(action)
return {"observation": obs}, float(reward), terminated, truncated, info
if __name__ == "__main__":
create_environment_server(Environment)Run this script as your Docker container entrypoint. The server listens on port 50051 by default.
Implement the CRLAgent interface and expose it via gRPC:
import numpy as np
from gymnasium import spaces
from containerl import CRLAgent, AllowedTypes, create_agent_server
class Agent(CRLAgent):
def __init__(self, target: float, gain: float):
self.target = target
self.gain = gain
self.observation_space = spaces.Dict({"state": spaces.Box(0, 100, shape=(1,))})
self.action_space = spaces.Box(0, 10, shape=(1,), dtype=np.float32)
def get_action(self, observation: dict[str, AllowedTypes]) -> AllowedTypes:
return np.clip(self.gain * (self.target - observation["state"]), 0, 10)
if __name__ == "__main__":
create_agent_server(Agent)Both create_environment_server and create_agent_server handle initialization arguments passed via gRPC, spawn the service, and manage the lifecycle automatically.
See more examples provided with the repository in the examples/ directory.
Show help and global options:
uv run containerl-cli --helpCommon, supported commands (see --help for full options):
uv run containerl-cli build ./examples/gymnasium/environments/atari/ -n my-image -t v1# Run with explicit image name
uv run containerl-cli run my-image:v1
# Run with a custom container name (only when count=1)
uv run containerl-cli run my-image:v1 --name my-container
# Run multiple containers
uv run containerl-cli run my-image:v1 --count 3
# Run in interactive mode (only when count=1)
uv run containerl-cli run my-image:v1 -i# Test with initialization arguments
uv run containerl-cli test --address localhost:50051 \
--init-arg render_mode="rgb_array" \
--init-arg env_name="ALE/Breakout-v5" \
--init-arg obs_type="ram"uv run containerl-cli build-run ./examples/gymnasium/environments/atari/
# With a custom container name
uv run containerl-cli build-run ./examples/gymnasium/environments/atari/ --container-name my-env# With initialization arguments (supports int, float, bool, and string values)
uv run containerl-cli build-run-test ./examples/gymnasium/environments/atari/ \
--init-arg render_mode="rgb_array" \
--init-arg env_name="ALE/Breakout-v5" \
--init-arg obs_type="ram"# Stop all containers started from a given image
uv run containerl-cli stop --image my-image:v1
# Stop container(s) by name
uv run containerl-cli stop --name my-containerThe CLI subcommands implemented are: build, run, test, stop, build-run, and build-run-test. Use containerl-cli <command> --help for command-specific flags.
Important notes:
- The default image name is
containerl-build:latest(used when no name is specified inbuildorruncommands) - Container naming (
--nameforrun,--container-nameforbuild-run/build-run-test), volume mounting (--volume), interactive mode (-i), and attach mode (-a) are only available when--count 1(the default) - The
stopcommand requires either--imageor--namebut not both - Initialization arguments (
--init-arg key=value) can be passed totestandbuild-run-testcommands to configure the environment or agent. Multiple init args can be specified, and values are automatically converted to int, float, bool, or string types
The repository separates tests into two folders: tests/unit/ and tests/integration/ to speed up the inner development loop and to make CI scheduling simpler.
pytest tests/unitIntegration tests: exercise containers, gRPC interfaces, or external services. Run them less frequently or in dedicated CI jobs:
pytest tests/integrationThis project is MIT licensed. For questions or issues open an issue at the repository or contact the maintainer listed in pyproject.toml.
Containerize your RL Environments and Agents
