Our paper adopts a base F2F model that uses Feature Pyramid Networks to predict semantic future maps and attempts to enhance this network by using a Probabilistic U-net to resolve the inherent ambiguities in the input feature maps.
evaluate.py [-h] [-L LAYER] [-M MODEL] [-I INPUT] [-O OUTPUT]
optional arguments:
-h, --help show this help message and exit
-L LAYER, --layer LAYER
: the fpn layer to train
-M MODEL, --model MODEL
: the model checkpoint to load
-I INPUT, --input INPUT
: the input file to evaluate
-O OUTPUT, --output OUTPUT
: the output file
Before Evaluation:
- Download the pretrained models or use train_model.py to train the models at each layer.
To Evaluate the model:
- Run the evaluate.py file using the following command
python evaluate.py --layer fpn_res3_3_sum --model /models/model.pth --input ./examples/frankfurt_000001_002634.pt --output ./out.pt