Skip to content

adhit-r/Dandayudham

Repository files navigation

Dandayudham

Agentic Enterprise Security Scanner Version 1.0 | December 2025

Dandayudham is an intelligent, agentic vulnerability and secret scanner that combines the adaptive reasoning of Nvidia Nemotron-Orchestrator-8B with specialized ML models (CodeBERT, SecretBERT) and industry-standard security tools. Unlike traditional scanners, Dandayudham understands organizational context, learns from patterns, and dynamically adapts its scanning strategy based on repository characteristics.

Key Differentiators

  • Agentic Intelligence: Nemotron-Orchestrator-8B orchestrates scans, deciding which tools and models to deploy based on repo analysis
  • Specialized ML Models: Fine-tuned CodeBERT catches vulnerability patterns, SecretBERT detects secrets with 98% accuracy
  • Organizational Learning: Builds "stack fingerprints" and learns what's critical for each company
  • Tool Ecosystem Integration: Leverages Semgrep, Gitleaks, OSV, Trivy via unified interface
  • Context-Aware Ranking: Understands blast radius, historical severity, and org-specific priorities

Target Market

Enterprise companies with 100+ repositories on GitHub/GitLab

Problem Statement

Current Pain Points

Problem Impact
Alert Fatigue Traditional scanners generate 1000s of findings, 70-80% are false positives
No Context Understanding Can't differentiate "API key in test fixture" vs "production AWS key in main branch"
One-Size-Fits-All Same rules for fintech companies and e-commerce platforms
Siloed Tools Teams run 5-7 different security tools, manually correlating results
No Learning Scanners don't learn from developer feedback or past incidents
Poor Prioritization Critical vulnerabilities buried under low-severity noise

Success Criteria

  • <5% False Positive Rate (industry standard: 20-30%)
  • Scan Time <10 minutes for 1M LOC repositories
  • 95%+ Precision on critical/high severity findings
  • Developer Trust Score >4.2/5 within 3 months
  • 40% Reduction in time-to-fix for vulnerabilities

Architecture

┌─────────────────────────────────────────────────────────────────────────┐
│                     DANDAYUDHAM CONTROL PLANE                           │
│              (Nemotron-Orchestrator-8B - Self-Hosted)                   │
│                                                                         │
│  • Repository Analysis & Strategy Planning                              │
│  • Dynamic Tool Selection & Coordination                                │
│  • Multi-turn Agentic Task Management                                   │
│  • Result Synthesis & Ranking                                           │
└─────────────────────────────────────────────────────────────────────────┘
                                │
         ┌──────────────────────┼──────────────────────┐
         ▼                      ▼                      ▼
┌────────────────┐   ┌────────────────┐   ┌────────────────┐
│   ML Models    │   │  Static Tools  │   │ Worker Agents  │
│  (Self-Hosted) │   │  (Open Source) │   │   (Parallel)   │
│                │   │                │   │                │
│ • CodeBERT     │   │ • Semgrep      │   │ Qwen3-8B /     │
│ • SecretBERT   │   │ • Gitleaks     │   │ Mistral-7B     │
│ • BGE-Large    │   │ • OSV Scanner  │   │                │
│                │   │ • Trivy        │   │ • File scan    │
└────────────────┘   └────────────────┘   │ • Context      │
                                          │ • Validation   │
                                          └────────────────┘
                                │
                                ▼
                 ┌─────────────────────────┐
                 │    Knowledge Store      │
                 │                         │
                 │  • PostgreSQL (relational)
                 │  • Qdrant (vectors)     │
                 │  • Redis (cache/queue)  │
                 └─────────────────────────┘

User Personas

1. Security Engineer (Primary)

  • Name: Priya, AppSec Lead
  • Goals: Prevent secrets in production, reduce vulnerability backlog, prove security posture
  • Needs: Accurate findings, clear explanations, integration with Jira/Slack

2. Engineering Manager (Secondary)

  • Name: Raj, Backend Team Lead
  • Goals: Ship features fast, maintain security standards, keep team unblocked
  • Needs: Non-blocking scans, learn from team's codebase, minimal disruption

3. CISO (Stakeholder)

  • Name: Aisha, Chief Information Security Officer
  • Goals: Demonstrate compliance, reduce breach risk, metrics for board
  • Needs: Executive dashboard, trend analysis, compliance reports

Technology Stack

Component Technology Rationale
Orchestrator Nemotron-Orchestrator-8B 8B params, outperforms GPT-5 on HLE, 2.5x more efficient
Worker LLM Qwen3-8B / Mistral-7B Cost-effective for parallel validation tasks
Vulnerability Detection CodeBERT (fine-tuned) SOTA for code understanding
Secret Detection SecretBERT (custom) 98% precision on secrets
Embeddings BGE-Large-en-v1.5 Best multilingual code embeddings
Frontend Next.js 16 + React 19 Modern, server-side rendering, SEO-friendly
Backend Python 3.11+, FastAPI, SQLAlchemy (Async) Python for ML, Go for performance-critical paths
Database PostgreSQL + Qdrant Relational + Vector storage
Queue Redis Simple, reliable, fast
Infrastructure Docker + Kubernetes Scalable, industry standard

Quick Start

Prerequisites

  • Python 3.11+
  • Docker & Docker Compose
  • NVIDIA GPU (for ML inference)
  • Node.js 20+ (for frontend)

Development Setup

# Clone the repository
git clone https://github.com/your-org/dandayudham.git
cd dandayudham

# Copy environment file
cp .env.example .env

# Start all services with Docker
docker-compose -f docker/docker-compose.yml up -d

# Access points
# Dashboard: http://localhost:3000
# API Docs:  http://localhost:8000/docs
# API:       http://localhost:8000/api/v1

Trigger a Scan

curl -X POST http://localhost:8000/api/v1/scan/trigger \
  -H "Content-Type: application/json" \
  -d '{
    "repo_url": "https://github.com/example/repo",
    "branch": "main",
    "scan_type": "full"
  }'

Project Structure

dandayudham/
├── apps/
│   ├── api/              # FastAPI main gateway
│   ├── ml-service/       # ML model inference
│   ├── orchestrator/     # Nemotron orchestration
│   ├── worker/           # Go-based scanner worker
│   └── frontend/         # React dashboard
├── integrations/         # GitHub, Jira, Slack
├── tools/                # CLI utilities
├── config/               # Semgrep rules, configs
├── docker/               # Docker configurations
└── k8s/                  # Kubernetes manifests

API Endpoints

Method Endpoint Description
POST /api/v1/scan/trigger Trigger a new scan
GET /api/v1/scan/{id}/status Get scan status
GET /api/v1/scan/{id}/results Get scan results
POST /api/v1/findings/{id}/feedback Submit FP/TP feedback
GET /api/v1/orgs/{id}/dashboard Organization dashboard
POST /api/v1/webhooks/github GitHub webhook handler

Success Metrics

Metric Target
False Positive Rate <5%
Precision (Critical) >95%
Scan Time (1M LOC) <10 min
API Latency (p95) <500ms
Developer Trust Score >4.2/5

Non-Functional Requirements

  • Performance: Full scan of 1M LOC repo in <10 minutes
  • Scalability: Handle 10,000 concurrent scans, 100M LOC/day
  • Security: SOC 2 Type II compliant, encryption at rest/transit
  • Reliability: 99.9% uptime SLA, automatic retries, graceful degradation

License

MIT License - See LICENSE for details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published