High-Dynamic Radar Sequence Prediction for
Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation
Ziye Wang · Yiran Qin · Lin Zeng · Ruimao Zhang
Paper | Project Page | Dataset
Our code relies on Python 3.10 and CUDA 12.4, but it should work with CUDA >= 11.8 as well.
- Clone STC-GS.
git clone https://github.com/Ziyeeee/STC-GS.git --recursive
cd STC-GS
- Create the environment, here we show an example using conda.
conda create -n stcgs python=3.10
conda activate stcgs
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
pip install -r requirements.txt
- Compile the cuda kernel.
pip install submodules/diff-gaussian-rasterization-radar
For more details, please refer to the 3D-NEXRAD dataset.
-
Extract the dataset from split tar files
cat nexrad-[YYYY].tar.gz.* | tar -zxv -C [your_dataset_dir]/
-
Preprocess and split the dataset
python utils/preprocess.py --path [your_dataset_path]
This will generate a
[your_dataset_name].jsonfile in the same directory.
To convert raw data into the Gaussian representation, run:
python mp_represent.py --num_processes [your_cpu_cnt] --hdf_path [your_dataset_path]The Gaussians and logs will be stored in a subdirectory within [your_dataset_path].
For quick testing and understanding of the data format, a mini dataset is available.
-
Prepare Gaussian Sequences
python utils/sort_stat.py --dataset_dir [your_gaussians_dir] --json_path [your_dataset_json_path]
-
Train the model
python train.py --dataset_dir [your_gaussians_dir] --json_path [your_dataset_json_path]
-
Evaluate
python test.py --dataset_dir [your_gaussians_dir] --json_path [your_dataset_json_path] --hdf_path [your_origin_dataset_path] --ckpt_path [your_ckpt_path]
@inproceedings{wang2025highdynamic,
title={High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation},
author={Ziye Wang and Yiran Qin and Lin Zeng and Ruimao Zhang},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=Cjz9Xhm7sI}
}