feat: Implementación de entorno de desarrollo con Dev Containers y Python 3.13#22
Open
aek676 wants to merge 15 commits intoSistemas-Multimedia:mainfrom
Open
feat: Implementación de entorno de desarrollo con Dev Containers y Python 3.13#22aek676 wants to merge 15 commits intoSistemas-Multimedia:mainfrom
aek676 wants to merge 15 commits intoSistemas-Multimedia:mainfrom
Conversation
Add .devcontainer/devcontainer.json to provide a Python 3 dev container (python:3.13.7-bookworm) with common-utils and python features; installs system libs and runs pip to install requirements. Add src/__pycache__/ to .gitignore. Add ipykernel and nbformat to requirements.txt for Jupyter support.
- Introduced LBT class for spatial redundancy exploitation using 2D Discrete Cosine Transform. - Implemented training, encoding, and decoding methods for LBT. - Added command-line arguments for block size, color transform, and perceptual quantization. - Updated requirements.txt to include 'torch' for PyTorch support.
…l problema. Con bloques grandes, la varianza puede ser muy pequeña, causando que 1/var explote y domine completamente el entrenamiento, haciendo que la transformación colapse a valores uniformes (gris). Learning rate adaptativo: lr = min(1e-2, 1.0 / N) - Para bloques de 32 (N=1024) esto da lr≈0.001, evitando inestabilidad. Gradient clipping - Previene explosión de gradientes con matrices grandes. Ahora la transformación solo optimiza la reconstrucción, manteniendo las matrices cercanas a la identidad (que es la inicialización) y convergiendo correctamente.
…compression - Introduced authorship section in the notebook. - Added a theoretical explanation of the Learning Block Transform (LBT) including model architecture and encoding flow. - Explained block size considerations and their impact on image processing. - Detailed the training process of the LBT model, including loss functions and optimization strategies. - Included information on quantization techniques and perceptual quantization. - Added implementation details for the LBT model in a new Python file.
|
Buenas tardes. En nombre del grupo compuesto por:
Hacemos entrega de nuestro algoritmo LBT propuesto. |
…LBT model - Updated default number of training epochs from 100 to 1000 in argument parser. - Changed weight initialization in LBTModel from identity to normal distribution with std=0.02. - Adjusted default lambda_gain parameter in LearnedBlockTransform from 0.0 to 1e-6. - Updated related logging messages to reflect new default values.
Increase default training epochs and adjust weight initialization in …
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
Resumen
Se ha configurado un entorno de desarrollo estandarizado utilizando Dev Containers. Esto permite a cualquier colaborador levantar el proyecto con todas las dependencias del sistema y de Python preinstaladas, evitando el clásico "en mi máquina funciona".
El entorno se basa en una imagen de Python 3.13 (Bookworm) e incluye configuración automática para VS Code.
Cambios Clave
.devcontainer/con la configuracióndevcontainer.json.libgl1,ffmpeg, etc.).README.mddentro de.devcontainer/explicando cómo usar este entorno.ipykernelynbformatenrequirements.txtpara asegurar la ejecución correcta de Notebooks dentro del contenedor..gitignorepara excluir__pycache__.Por qué es necesario
El proyecto requiere librerías del sistema (como
ffmpegylibgl) que pueden ser tediosas de instalar manualmente en diferentes sistemas operativos (Windows/Mac/Linux). Con este contenedor, la instalación es automática y aislada.Cómo probarlo
pip3 listpara confirmar las dependencias.