Skip to content

ShopeeLLM/CompassEmbeddingV4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CompassEmbeddingV4 Tech Report

As global e-commerce rapidly expands into emerging markets, the lack of high-quality semantic representations for low-resource languages has become a decisive bottleneck for retrieval, recommendation, and search systems. In this work, we present Compass-Embedding v4, a high-efficiency multilingual embedding framework specifically optimized for Southeast Asian (SEA) e-commerce scenarios, where data scarcity, noisy supervision, and strict production constraints jointly challenge representation learning. Compass-Embedding v4 addresses three core challenges. First, large-batch contrastive training under mixed task supervision introduces systematic false negatives that degrade semantic alignment. We propose Class-Aware Masking (CAM), a lightweight modification to the InfoNCE objective that suppresses invalid in-batch negatives and improves semantic discrimination without altering training efficiency. Second, low-resource SEA languages suffer from limited and uneven data coverage. We construct a diversified training corpus through context-grounded synthetic data generation, cross-lingual translation, and structured e-commerce data construction, enabling robust multilingual and domain-specific learning. Third, production deployment requires high-throughput inference while preserving embedding quality. We combine robustness-driven large-batch training with spherical model merging to mitigate catastrophic forgetting, and optimize inference via vLLM and FP8 quantization. Extensive evaluations across multilingual benchmarks and proprietary e-commerce tasks show that Compass-Embedding v4 achieves state-of-the-art performance on major SEA languages, significantly outperforming general-purpose embedding models in domain-specific retrieval and classification, while maintaining competitive performance on high-resource languages.

Benchmark performance of Compass-Embedding v4

About

Official repo for Compass Embedding V4

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published