Skip to content

Scient025/ForVis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

F1 Data Visualization 🏎️

A comprehensive data visualization tool built with Python to analyze Formula 1 telemetry and real-time data. This application provides insights into race performance, lap times, and various other metrics through an interactive GUI interface.

🌟 Features

  • Real-time telemetry data visualization

  • Multiple analysis types:

    • Lap Time Analysis
    • Fastest Lap Comparison
    • Fastest Sectors Analysis
    • Full Telemetry Visualization
    • Tyre Compound and Stint Analysis
    • Pit Stop Impact Analysis
    • Fuel Usage Impact Analysis
    • Position Changes Tracking
  • Machine Learning predictions for pit stop strategies

  • Interactive GUI with customizable parameters

  • Support for historical race data analysis

  • Multi-driver comparison capabilities

🔧 Technologies Used

  • Python 3.12.0
  • PyQt5 - GUI Framework
  • FastF1 - F1 Data Access
  • Pandas - Data Manipulation
  • Matplotlib/Seaborn - Data Visualization
  • Scikit-learn - Machine Learning
  • Apache Spark - Big Data Processing
  • Dash - Web-based Visualization
  • HDFS - Data Storage

📋 Prerequisites

  • Python 3.8 or higher
  • Apache Spark installation
  • HDFS setup (for big data storage)

🚀 Installation

  1. Clone the repository.

  2. Install required packages:

    pip install -r requirements.txt
  3. Configure HDFS connection:

    • Update the HDFS cluster IP in spark.py
    • Ensure proper permissions for data access

💻 Usage

GUI Application

Run the main GUI application:

python gui.py

Model Prediction Window

For standalone model predictions:

python gui_model.py

Web Dashboard

Launch the Dash web interface:

python app.py

📊 Available Analysis Types

  1. Lap Time Analysis

    • Compare lap times between drivers
    • Track performance evolution
  2. Fastest Lap Analysis

    • Identify and analyze fastest laps
    • Sector-by-sector breakdown
  3. Full Telemetry

    • Speed traces
    • Throttle/brake patterns
    • Gear usage analysis
  4. Strategy Analysis

    • Tyre compound impact
    • Pit stop timing
    • Fuel load effects

🔄 Data Pipeline

  1. Data Collection (fastf1)

    • Live timing data
    • Historical race data
    • Driver telemetry
  2. Processing (Spark)

    • Data cleaning
    • Feature engineering
    • Performance calculations
  3. Storage (HDFS)

    • Raw data storage
    • Processed datasets
    • Model artifacts
  4. Analysis

    • Statistical analysis
    • Machine learning predictions
    • Performance comparisons

🤖 Machine Learning Features

  • Pit stop prediction model
  • Performance trend analysis
  • Anomaly detection
  • Strategy optimization

About

Data visualisation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages