MultiMM is an OpenMM model designed for modeling the 3D structure of the whole human genome. Its distinguishing feature is that it is multiscale, meaning it aims to model different levels of chromatin organization, from smaller scales (nucleosomes) to the level of chromosomal territories. The algorithm is both fast and accurate. A key feature enabling its speed is GPU parallelization via OpenMM, along with smart assumptions that assist the optimizer in finding the global minimum. One such fundamental assumption is the use of a Hilbert curve as the initial structure. This helps MultiMM to converge faster because the initial structure is already highly compacted.
After running the MultiMM model, users obtain a genome-wide structure. Users can color different chromosomes or compartments, or they can visualize individual chromosomes separately. MultiMM is simple to use, as it is based on modifying a single configuration file. Here we explain its usage.
The workflow of MultiMM is illustrated in the following schematic. The user first provides a set of interactions from a 3C-type experiment, representing chromatin loops, and optionally supplies compartment annotations. The user can also specify a region or chromosome of interest. MultiMM then imports an initial structure, performs basic preprocessing on the input data, and applies a force field corresponding to the provided interactions. All simulation parameters and user preferences must be specified in the config.ini file. Afterward, the software generates the 3D chromatin structures, and, if ATAC-Seq data are provided, applies nucleosome interpolation to refine the model.
- OpenMM based.
- User-friendly software available via PyPI.
- Efficient simulation of chromatin interactions using 3D conformations.
- Can simulate the scales of nucleosomes, TADs, compartments, chromosomal territories and interactions with lamina. Scalable simulations across different force fields and resolution levels.
- Compatible with modern GPU-accelerated simulation libraries. CPU acceleration can also be done.
- Possibility of creation of ensembles of 3D structures of chromatin.
MultiMM has been tested primarily on Linux-based operating systems, with successful tests in Ubuntu, Debian, and Red Hat-based distributions. It is also possible to run it on macOS, though without CUDA support, which is helpful for accelerating computations. We do not recommend running MultiMM on Windows systems.
MultiMM can be easily installed with pip:
pip install MultiMMPyPI software: https://pypi.org/project/MultiMM/.
We model chromatin as a coarse-grained polymer confined inside the nucleus. The system is described by an effective energy functional
Each bead represents a chromatin segment of fixed genomic length. The equilibrium structure is obtained by energy minimization or short relaxation dynamics.
Polymer connectivity, stiffness, and excluded volume are enforced by the following potential energy terms:
where
is the harmonic bond potential that keeps consecutive beads at distance ≈ ℓ,
is the bending energy that controls chain stiffness (θᵢ is the angle between bonds i−1→i and i→i+1),
and
is the purely repulsive long-range interaction that enforces excluded volume.
The first term fixes bond lengths, the second controls bending rigidity, and the third prevents unphysical monomer overlap.
Chromatin loops detected experimentally are modeled as harmonic restraints
The equilibrium loop length depends on interaction strength
For single cell data all loops have the same equilibrium distance.
Long range compartmentalization is described by a Gaussian attraction between beads of the same compartment
Only beads sharing the same compartment label interact. The interaction strength satisfies
Subcompartments are treated by assigning distinct energy levels.
Chromatin is confined between two concentric spherical boundaries with radii
Inactive compartments are attracted to the nuclear lamina via
This potential has minima near both inner and outer boundaries.
Smaller chromosomes experience a weak attraction toward the nucleolus
where
When loop or compartment information is insufficient, an optional weak confining potential can be applied
This term has no direct biological interpretation and is disabled by default.
After coarse grained optimization, nucleosome positions are interpolated using a beads on the string zigzag model. Each nucleosome is represented as a helix with 1.65 DNA turns. The number of nucleosomes per bead is derived from normalized ATAC Seq signal, enforcing nucleosome rich regions in low accessibility chromatin.
MultiMM relies on three types of datasets:
- Loop interactions in
bedpeformat (mandatory). - Compartmentalization data in
bedformat (optional). - ATAC-Seq p-value data in
.BigWigformat (optional).
For loop interactions, users must provide a file describing interactions between anchor 1 and anchor 2, along with their strength.
The file must be in .bedpe format, contain 7 columns, and must not include a header.
chr10 100225000 100230000 chr10 100420000 100425000 95
chr10 100225000 100230000 chr10 101005000 101010000 56
chr10 101190000 101195000 chr10 101370000 101375000 152
chr10 101190000 101200000 chr10 101470000 101480000 181
chr10 101600000 101605000 chr10 101805000 101810000 152
The file can include interactions from all chromosomes; MultiMM will automatically handle them.
For single-cell data, users should prepare the file by setting the second and third columns identical (as well as the fifth and sixth columns) and set the strength value to 1.
For (sub)compartment interactions, the file should be in the format produced by the CALDER software: https://github.com/CSOgroup/CALDER2. Users do not need to run CALDER specifically, but the file format must match. The file should contain at least the first four columns with chromosome, regions, and the subcompartment label. Example:
chr1 700001 900000 A.1.2.2.2.2.2.2 0.875 . 700001 900000 #FF4848
chr1 900001 1400000 A.1.1.1.1.2.1.1.1.1.1 1 . 900001 1400000 #FF0000
chr1 1400001 1850000 A.1.1.1.1.2.1.2.2.2.1 1 . 1400001 1850000 #FF0000
chr1 1850001 2100000 B.1.1.2.2.1.2.1 0.5 . 1850001 2100000 #DADAFF
For ATAC-Seq data, users must provide a BigWig file containing p-values. The pyBigWig library is required to read BigWig files. Note: pyBigWig is not compatible with Windows systems.
To model a genomic region around a specific gene, you can load a .tsv file containing gene information. Specify either the gene name or the gene ID.
The .tsv file should be formatted as follows:
gene_id gene_name chromosome start end
ENSG00000160072 ATAD3B chr1 1471765 1497848
ENSG00000279928 DDX11L17 chr1 182696 184174
ENSG00000228037 chr1 2581560 2584533
ENSG00000142611 PRDM16 chr1 3069168 3438621
ENSG00000284616 chr1 5301928 5307394
ENSG00000157911 PEX10 chr1 2403964 2413797
ENSG00000269896 chr1 2350414 2352820
ENSG00000228463 chr1 257864 359681
ENSG00000260972 chr1 5492978 5494674
ENSG00000224340 chr1 10054445 10054781
In case that you specify the gene, MultiMM will output a visualization with the gene as well. For example, in the folowing region we can see the polymer structure that is modelled (around the gene) and the gene with red color.
The MultiMM model targets the gene file automatically, so you do not have to provide it. However, you can optionally change it.
Note: Currently, MultiMM is designed to work with human genome data. While it may be possible to run the code on other organisms with additional debugging and modifications, full support for other species is planned for future versions. MultiMM can process various types of datasets. It is capable of calling loops from a range of experiments, including Hi-C, scHi-C, ChIA-PET, and Hi-ChIP. However, we cannot guarantee that the default parameters are optimal for every dataset. Therefore, users are encouraged to test the software carefully and verify the convergence of the algorithm with their own data.Before adjusting any parameters, please read the method paper thoroughly to understand the role and impact of each force.
All the model's parameters are specified in a config.ini file. This file should have the following format:
[Main]
; Platform selection
PLATFORM = OpenCL
; Input data
FORCEFIELD_PATH = forcefields/ff.xml
LOOPS_PATH = /home/skorsak/Data/Rao/GSE63525_GM12878_primary+replicate_HiCCUPS_looplist_hg19.bedpe
COMPARTMENT_PATH = /home/skorsak/Data/Rao/subcompartments_primary_replicate/sub_compartments/all_sub_compartments.bed
ATACSEQ_PATH = /home/skorsak/Data/encode/ATAC-Seq/ENCSR637XSC_GM12878/ENCFF667MDI_pval.bigWig
OUT_PATH = application_note
; Simulation Parameters
N_BEADS = 50000
SHUFFLE_CHROMS = True
NUC_DO_INTERPOLATION = True
; Enable forcefield for genome-wide simulation
SC_USE_SPHERICAL_CONTAINER = True
CHB_USE_CHROMOSOMAL_BLOCKS = True
SCB_USE_SUBCOMPARTMENT_BLOCKS = True
IBL_USE_B_LAMINA_INTERACTION = True
CF_USE_CENTRAL_FORCE = True
; Simulation Parameters
SIM_RUN_MD = True
SIM_SAMPLING_STEP = 50
SIM_N_STEPS = 1000
TRJ_FRAMES = 100After specifying the parameters and forces, users can run the following command in the terminal:
MultiMM -c config.iniThe software will output a folder with the resulting structure and plots showing compartment distribution.
Example data can be found on Google Drive: https://drive.google.com/drive/folders/1nFAPE4pCaHpeL5nw6nq0VvfUFoc24aXm?usp=sharing. Note that this data is publicly available from Rao et al. The subcompartment predictions were made using CALDER, and the ATAC-Seq data is from ENCODE.
In the examples folder, we provide example configuration files for different modeling scenarios.
In the latest version of MultiMM, we have introduced the MODELLING_LEVEL argument. This is a magic parameter designed to help users—especially those new to molecular modelling—easily configure model parameters based on the desired resolution.
The following modelling levels are available:
-
GENE: The user provides a gene of interest along with a
.bedpefile path. MultiMM then models the gene using a default (+- 100kb)gene_window. At this level, compartment forces are not considered. -
REGION: The user specifies a chromosome and genomic coordinates. Compartment interactions can also be included optionally. MultiMM models only the selected genomic region.
-
CHROMOSOME: The user specifies a chromosome number, and MultiMM determines the start and end coordinates internally. Compartment data can also be imported.
-
GW (Genome-Wide): This option models the entire genome. No input for chromosome or coordinates is needed. This is the most computationally intensive option and may take from minutes to hours, depending on the hardware.
Additionally, this argument automatically sets the number of simulation beads. Regardless of the user-defined N_BEADS value, specifying MODELLING_LEVEL overrides it with a default setting:
- GENE: 1,000 beads
- REGION: 5,000 beads
- CHROMOSOME: 20,000 beads
- GW: 200,000 beads
This feature offers a convenient starting point for new users. Nevertheless, we recommend that advanced users avoid using this argument if they require finer control over simulation parameters.
For vizualization purposes, if you would like to import the whole genome structure you may use the command,
import simulation.plots as splt
splt.viz_chroms(sim_path)For sim_path you should add the output folder directory path (add comps=Fase in case that you do not need compartment coloring). Otherwise, in case that the user would like to model a particular region, without using compartment or chromosome coloring (pretty much any cif structure), they can type,
import simulation.plots as splt
import simulation.utils as suts
V = suts.get_coordinates_cif(cif_path)
splt.viz_structure(V)We would like once again to thank people who developed pyvista library and allow us to have fast and good vizualizations of large chromatin structure.
MultiMM has numerous configurable parameters. Below is a description of each argument and its default values. The defaults have been tested for genome-wide simulation but can be modified in the configuration file if needed. Units are typically assumed based on OpenMM conventions, though explicit unit specification is not required.
Here we can see the long table of the simulation arguments. Somtimes MultiMM might not work for some choices of arguments. For example:
- If you would like to model lamina interaction having disabled compartment interactions.
- If you do not provide appropriate data i.e. for compartmentalization but you have enabled (sub)compartent-specific forcefield.
Therefore, it is advisable to read the paper and understand well the meaning of each force before you start running simulations. MultiMM is a research model, not a market product and thus it requires a level of expertise (despite the easiness of usage) to underatand and run it.
Below is a categorized description of the simulation arguments and their default values. These parameters can be modified in the configuration file as needed.
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| PLATFORM | str | CPU | None | Name of the platform. Available choices: CPU, OpenCL, CUDA. |
| CPU_THREADS | int | None | None | Number of CPU threads (if CPU is chosen as the platform). |
| DEVICE | str | None | None | Device index for CUDA or OpenCL (count from 0). |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| FORCEFIELD_PATH | str | None | None | Path to XML file with forcefield. |
| LOOPS_PATH | str | None | None | Path to .bedpe file with loops (required). |
| COMPARTMENT_PATH | str | None | None | Path to .bed file with subcompartments from CALDER. |
| ATACSEQ_PATH | str | None | None | Path to .bw or .BigWig file with ATAC-Seq data (optional). |
| OUT_PATH | str | results | None | Output folder name. |
| INITIAL_STRUCTURE_PATH | str | None | None | Path to CIF file for the initial structure. |
| GENE_TSV | str | None | default_path | Path to a .tsv file with gene locations in the genome. |
| GENE_NAME | str | None | None | Name of the gene of interest. |
| GENE_ID | str | None | None | ID of the gene of interest. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| BUILD_INITIAL_STRUCTURE | bool | True | None | Whether to build a new initial structure. |
| INITIAL_STRUCTURE_TYPE | str | hilbert | None | Type of initial structure. Options: hilbert, circle, rw, confined_rw, self_avoiding_rw, helix, spiral, sphere, knot. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| MODELLING_LEVEL | str | None | None | Specify resolution: 'GENE', 'REGION', 'CHROM', or 'GW'. |
| LOC_START | int | None | None | Starting coordinate for the region of interest. |
| LOC_END | int | None | None | Ending coordinate for the region of interest. |
| CHROM | str | None | None | Chromosome for the region of interest. |
| GENE_WINDOW | int | 10000 | bp | Window size around the gene of interest. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| N_BEADS | int | 50000 | None | Number of simulation beads. |
| SHUFFLE_CHROMS | bool | False | None | Shuffle chromosomes. |
| SHUFFLING_SEED | int | 0 | None | Random seed for shuffling. |
| SIM_RUN_MD | bool | False | None | Whether to run MD simulation. |
| SIM_N_STEPS | int | 10000 | None | Number of MD simulation steps. |
| SIM_SAMPLING_STEP | int | 100 | None | Number of steps between saved structures. |
| SIM_TEMPERATURE | Quantity | 310 | kelvin | Simulation temperature. |
| SIM_INTEGRATOR_TYPE | str | langevin | None | Integrator type: variable_langevin, langevin, variable_verlet, verlet, amd, brownian. |
| SIM_INTEGRATOR_STEP | Quantity | 1 | fsec | Step size for the integrator. |
| SIM_FRICTION_COEFF | float | 0.5 | 1/psec | Friction coefficient (for Langevin and Brownian integrators). |
| SIM_SET_INITIAL_VELOCITIES | bool | False | None | Set initial velocities based on Boltzmann distribution. |
| TRJ_FRAMES | int | 2000 | None | Number of trajectory frames to save. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| POL_USE_HARMONIC_BOND | bool | True | None | Use harmonic bond interaction for consecutive beads. |
| POL_HARMONIC_BOND_R0 | float | 0.1 | nm | Equilibrium distance for harmonic bonds. |
| POL_HARMONIC_BOND_K | float | 300000.0 | kJ/mol/nm^2 | Force constant for harmonic bonds. |
| POL_USE_HARMONIC_ANGLE | bool | True | None | Use harmonic angle interaction for consecutive beads. |
| POL_HARMONIC_ANGLE_R0 | float | pi | radians | Equilibrium angle for harmonic angle force. |
| POL_HARMONIC_ANGLE_CONSTANT_K | float | 100.0 | kJ/mol/radian^2 | Force constant for harmonic angles. |
| EV_USE_EXCLUDED_VOLUME | bool | True | None | Use excluded volume interaction. |
| EV_EPSILON | float | 100.0 | kJ/mol | Strength of excluded volume interaction. |
| EV_R_SMALL | float | 0.05 | nm | Small radius added to avoid singularities. |
| EV_POWER | float | 3.0 | None | Exponent for excluded volume potential. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| SC_USE_SPHERICAL_CONTAINER | bool | False | None | Use a spherical container. |
| SC_RADIUS1 | float | None | nm | Inner radius of the spherical container. |
| SC_RADIUS2 | float | None | nm | Outer radius of the spherical container. |
| SC_SCALE | float | 1000.0 | kJ/mol/nm^2 | Scaling factor for the spherical container. |
| CHB_USE_CHROMOSOMAL_BLOCKS | bool | False | None | Use chromosomal blocks. |
| CHB_KC | float | 0.3 | nm^(-4) | Block copolymer width parameter. |
| CHB_DE | float | 1e-5 | kJ/mol | Energy factor for chromosomal blocks. |
| SCB_USE_SUBCOMPARTMENT_BLOCKS | bool | False | None | Use subcompartment blocks. |
| SCB_DISTANCE | float | None | nm | Equilibrium distance for subcompartment blocks. |
| SCB_EA1 | float | 1.0 | kJ/mol | Energy strength for A1 compartment. |
| SCB_EA2 | float | 1.33 | kJ/mol | Energy strength for A2 compartment. |
| SCB_EB1 | float | 1.66 | kJ/mol | Energy strength for B1 compartment. |
| SCB_EB2 | float | 2.0 | kJ/mol | Energy strength for B2 compartment. |
| IBL_USE_B_LAMINA_INTERACTION | bool | False | None | Enable interactions of B compartment with lamina. |
| IBL_SCALE | float | 400.0 | kJ/mol | Scaling factor for lamina interaction. |
| CF_USE_CENTRAL_FORCE | bool | False | None | Enable attraction of smaller chromosomes to the nucleolus. |
| CF_STRENGTH | float | 10.0 | kJ/mol | Strength of central force attraction. |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| GENERATE_ENSEMBLE | bool | False | None | Generate an ensemble of structures. |
| N_ENSEMBLE | int | None | None | Number of structures in the ensemble. |
| DOWNSAMPLING_PROB | float | 1.0 | None | Probability of downsampling (0 to 1). |
| Argument Name | Type | Value | Units | Description |
|---|---|---|---|---|
| NUC_DO_INTERPOLATION | bool | False | None | Enable nucleosome interpolation. |
| NUC_RADIUS | float | 0.1 | None | Radius of the nucleosome helix. |
| POINTS_PER_NUC | int | 20 | None | Number of points in a nucleosome helix. |
| PHI_NORM | float | pi/5 | None | Zig-zag angle for nucleosome helix. |
The output directory is organized in the following folders,
config_auto.ini
├── md_frames
│ ├── frame_1_100.cif
├── metadata
│ ├── chimera_gene_coloring.cmd
│ ├── chrom_idxs.npy
│ ├── chrom_lengths.npy
│ ├── ds.npy
│ ├── ms.npy
│ ├── MultiMM_annealing.dcd
│ ├── MultiMM_init.cif
│ ├── MultiMM.psf
│ ├── ns.npy
│ └── parameters.txt
├── model
│ ├── MultiMM_afterMD.cif
│ └── MultiMM_minimized.cif
├── plots
│ ├── initial_structure_gene_coloring.png
│ ├── initial_structure.png
│ ├── minimized_structure_gene_coloring.png
│ ├── minimized_structure.png
│ ├── structure_afterMD_gene_coloring.png
│ └── structure_afterMD.png
In md_frames, the frames of md dynamics can be found in case that md simulation is enabled.
In metadata you can find the initial structure and other produced numpy arrays. For example, ms, ns, are the left and right locations of loops in the region of interest. ds is the loop strength converted to distance. psf and dcd files are for the visualization of the trajectory in UCSF chimera software: https://www.cgl.ucsf.edu/chimera/, and chimera_gene_coloring.cmd is genetrated to give the coloring with the red region to be the gene of interest.
In the model is the resulted minimized structure and the structure after the MD simulation. If it is genomewide simulation, it would output the structures of each chromosome in a folder chromosomes.
In plots directory you can find plots of the structures. Note that the initial structure plot is only to see the initial stucture used in the simulation. Initial structure does not have direct biological meaning.
The software is freely distributed under the GNU license and is available for use in research, in accordance with the open-source license of MultiMM. If you use the software for research or other purposes, please cite the following paper:
- Korsak, Sevastianos, Krzysztof Banecki, and Dariusz Plewczynski. "Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome." Computational and Structural Biotechnology Journal 23 (2024): 3537–3548.
If you would like to contribute to the development of this model or suggest improvements, we encourage you to contact the authors. Additionally, if you encounter any issues while running the software, your feedback is highly appreciated, and we are happy to assist you.



