Official repository for UMH: Enhancing Medical Image Segmentation via Heat Conduction Equation.
Requirements: Ubuntu 22.04, CUDA 12.8
- Create a virtual environment:
conda create -n UMH python=3.11 -yandconda activate UMH - Install Pytorch 2.4.1:
pip install torch==2.4.1 torchvision==0.19 --index-url https://download.pytorch.org/whl/cu128 - Install Mamba:
pip install causal-conv1d>=1.2.0andpip install mamba-ssm --no-cache-dir - Download code:
git clone https://github.com/Rows21/UMH cd UMH/umhand runpip install -e .
sanity test: Enter python command-line interface and run
import torch
import mamba_ssmUMH is built on nnU-Net. please follow this guideline to prepare your own dataset. The dataset used in the paper is here.
nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity- Train 2D
U-Mamba_Botmodel
nnUNetv2_train DATASET_ID 2d all -tr nnUNetTrainerUMH- Train 3D
U-Mamba_Botmodel
nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerUMH- Predict testing cases with
UMHmodel
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c CONFIGURATION -f all -tr nnUNetTrainerUMH --disable_tta``
CONFIGURATIONcan be2dand3d_fullresfor 2D and 3D models, respectively.
@article{wu2025enhancing,
title={Enhancing Medical Image Segmentation via Heat Conduction Equation},
author={Wu, Rong and Yu, Yim-Sang},
journal={arXiv preprint arXiv:2511.03260},
year={2025}
}
We acknowledge all the authors of the employed public datasets, allowing the community to use these valuable resources for research purposes. We also thank the authors of nnU-Net and U-Mamba for making their valuable code publicly available.
