Programmatic Amazon Connect contact flow generation using Python. Allows for Ai models to generate contact flows based on human languages way easier than writing JSON as majority of the time it will fail to generate a valid contact flow from scratch.
from flow_builder import Flow
flow = Flow.build("Burger Order")
welcome = flow.play_prompt("Welcome to Burger Palace!")
menu = flow.get_input("Press 1 for Classic Burger or 2 for Veggie Burger", timeout=10)
welcome.then(menu)
classic = flow.play_prompt("You selected Classic Burger. Your order is confirmed!")
veggie = flow.play_prompt("You selected Veggie Burger. Your order is confirmed!")
error_msg = flow.play_prompt("Invalid selection. Goodbye.")
disconnect = flow.disconnect()
# Chain menu options with error handling
menu.when("1", classic) \
.when("2", veggie) \
.otherwise(error_msg) \
.on_error("InputTimeLimitExceeded", error_msg) \
.on_error("NoMatchingCondition", error_msg) \
.on_error("NoMatchingError", error_msg)
# Or without chaining:
# menu.when("1", classic)
# menu.when("2", veggie)
# menu.otherwise(error_msg)
# menu.on_error("InputTimeLimitExceeded", error_msg)
# menu.on_error("NoMatchingCondition", error_msg)
# menu.on_error("NoMatchingError", error_msg)
classic.then(disconnect)
veggie.then(disconnect)
error_msg.then(disconnect)
flow.compile_to_file("burger_order.json")Use placeholders for dynamic resource ARNs:
from flow_builder import Flow
flow = Flow.build("Counter Flow")
welcome = flow.play_prompt("Thank you for calling!")
invoke_counter = flow.invoke_lambda(
function_arn="${COUNTER_LAMBDA_ARN}", # Resolved by Terraform
timeout_seconds="8"
)
welcome.then(invoke_counter)
say_count = flow.play_prompt("You are caller number $.External.count")
invoke_counter.then(say_count)
disconnect = flow.disconnect()
say_count.then(disconnect)
invoke_counter.on_error("NoMatchingError", disconnect)
flow.compile_to_file("counter_flow.json")Here's what the generated flows look like in the Amazon Connect console:
- Fluent Python API for building flows
- Naive block positioning for AWS Connect visual canvas
- Automatic UUID generation for blocks
- Error/Conditional handling support
- Integration with AWS Lambda and lexv2 bots
- Template placeholder support for Terraform/IaC
- Decompile existing flows to Python
- Majority of Amazon Connect block types supported
- Shell scripts to download, validate, and test flows against Connect
- Compliance Checking, check flow structures for best practices, encryption, etc.
- Optimization Suggestions, analyze flows for efficiency improvements.
- Output to diagram formats for other visualization tools.
- Template library of common flow patterns.
# See Terraform example
cd terraform_example
python flow_generator.py
# Deploy with Terraform
cd terraform
terraform init
terraform applysrc/
flow_builder.py # Main builder API
decompiler.py # JSON to Python
blocks/ # All Connect block types
contact_actions/ # Actions like CreateTask
readme.md # Contains progress on supported blocks
flow_control_actions/ # Flow control blocks
readme.md # Contains progress on supported blocks
interactions/ # Interaction blocks
readme.md # Contains progress on supported blocks
participant_actions/ # Participant blocks
readme.md # Contains progress on supported blocks
examples/ # Sample flows
terraform_example/ # Complete deployment example
docs/ # API reference
- Python 3.11+
- AWS credentials (for deployment)
- Terraform (optional, for infrastructure)

