Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions Chapter 02/code/naive_bayes.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn import cross_validation
from sklearn import model_selection

from utilities import visualize_classifier

Expand Down Expand Up @@ -32,7 +32,7 @@
# Cross validation

# Split data into training and test data
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2, random_state=3)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=3)
classifier_new = GaussianNB()
classifier_new.fit(X_train, y_train)
y_test_pred = classifier_new.predict(X_test)
Expand All @@ -48,19 +48,19 @@
# Scoring functions

num_folds = 3
accuracy_values = cross_validation.cross_val_score(classifier,
accuracy_values = model_selection.cross_val_score(classifier,
X, y, scoring='accuracy', cv=num_folds)
print("Accuracy: " + str(round(100*accuracy_values.mean(), 2)) + "%")

precision_values = cross_validation.cross_val_score(classifier,
precision_values = model_selection.cross_val_score(classifier,
X, y, scoring='precision_weighted', cv=num_folds)
print("Precision: " + str(round(100*precision_values.mean(), 2)) + "%")

recall_values = cross_validation.cross_val_score(classifier,
recall_values = model_selection.cross_val_score(classifier,
X, y, scoring='recall_weighted', cv=num_folds)
print("Recall: " + str(round(100*recall_values.mean(), 2)) + "%")

f1_values = cross_validation.cross_val_score(classifier,
f1_values = model_selection.cross_val_score(classifier,
X, y, scoring='f1_weighted', cv=num_folds)
print("F1: " + str(round(100*f1_values.mean(), 2)) + "%")