Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified ACEFormat.pdf
Binary file not shown.
39 changes: 29 additions & 10 deletions src/ContinuousEnergyNeutron.tex
Original file line number Diff line number Diff line change
Expand Up @@ -831,21 +831,40 @@ \subsubsubsection{\var{LAW}=61---Like \var{LAW}=44, but tabular angular distribu
\end{description}

\subsubsubsection{\var{LAW}=66---$N$-body phase space distribution}\label{sec:LAW66}
\begin{LAWTable}{\var{LAW}=66 (From ENDF-6 \MF=6 \var{LAW}=6)}
\var{LDAT}(1) & \var{NPSX} & Number of bodies in the phase space \\
\var{LDAT}(2) & $A_{P}$ & Total mass ratio for the \var{NPSX} particles.
\label{tab:LAW66}
\end{LAWTable}
\begin{ThreePartTable}
\begin{TableNotes}
\item[$\dagger$] \label{tn:LAW66FractionInterpolationScheme}
\begin{description}
\item[\var{INTT}=1] histogram distribution, and
\item[\var{INTT}=2] linear-linear distribution.
\end{description}
\end{TableNotes}
\begin{LAWTable}{\var{LAW}=66 (From ENDF-6 \MF=6 \var{LAW}=6)}
\var{LDAT}(1) & \var{NPSX} & Number of bodies in the phase space \\
\var{LDAT}(2) & $A_{P}$ & Total mass ratio for the \var{NPSX} particles \\
\var{LDAT}(3) & \var{INTT} & Interpolation flag\tnotex{tn:LAW66FractionInterpolationScheme} \\
\var{LDAT}(4) & $N_{P}$ & Number of points in the distribution \\
\var{LDAT}(5) & $T(j),j=1,\ldots,N_{P}$ & Fraction of max energy \\
\var{LDAT}(5+$N_{P}$) & $\PDF(j),j=1,\ldots,N_{P}$ & Probability density function \\
\var{LDAT}(5+$2N_{P}$) & $\CDF(j),j=1,\ldots,N_{P}$ & Cumulative density function
\label{tab:LAW66}
\end{LAWTable}
\end{ThreePartTable}

The outgoing energy is
The outgoing center-of-mass energy is
\begin{align}
E_{\mathrm{out}} &= T(\xi)E_{i}^{\mathrm{max}} \\
E_{\mathrm{out}}^{\mathrm{CM}} &= TE_{i}^{\mathrm{max}} \\
\intertext{where}
E_{i}^{\mathrm{max}} &= \frac{A_{p}-1}{A_{p}}\left( \frac{A}{A+1}E_{\mathrm{in}}+Q \right) \\
\intertext{and $T(\xi)$ is sampled from:}
P_{i}(\mu,E_{\mathrm{in}},T) &= C_{n}\sqrt{T}\left( E_{i}^{\mathrm{max}}-T \right)^{3n/2-4}
E_{i}^{\mathrm{max}} &= \frac{A_{p}-1}{A_{p}}\left( \frac{A}{A+1}E_{\mathrm{in}}+Q \right). \\
\intertext{With $n=\mathrm{NPSX}$, the analytic distribution for $T$ is:}
P(T) &= C_{n}\sqrt{T}\left( 1 - T \right)^{3n/2-4} \\
\intertext{where $C_{n}$ is taken to be:}
C_{n=3} &= \frac{8}{\pi}\\
C_{n=4} &= \frac{105}{16} \\
C_{n=5} &= \frac{256}{7\pi}
\label{eq:LAW66}
\end{align}
The cosine of the center-of-mass scattering angle, $\mu_{\mathrm{CM}}$, is isotropic.

\subsubsubsection{\var{LAW}=67---Laboratory Angle-Energy Law}\label{sec:LAW67}
\begin{ThreePartTable}
Expand Down