Skip to content

NoHaitch/Machine-Learning-Algorithm-Implementation-on-UNSW-NB15-dataset

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Implementasi Algoritma Pembelajaran Mesin

Tugas Besar 2 IF3170 Inteligensi Artifisial

Implementasi Algoritma Pembelajaran Mesin KNN, Naive Bayes, dan ID3


Report Bug · Request Feature

MIT License

Made By:

Kelompok 25:

AK48

NIM Nama
13522020 Aurelius Justin Philo Fanjaya
13522071 Bagas Sambega Rosyada
13522090 Fedrianz Dharma
13522091 Raden Francisco Trianto B.

External Links

(back to top)

About The Project

This program created to implement 3 Supervised Learning algorithms, K-Nearest Neighbor (KNN), Naive Bayes, and Iterative Dichhotomizer 3 (ID3) from scratch.

Dataset used is dataset UNSW-NB15, contains lists of cyber attack and normal condition of network traffic.

(back to top)

Getting Started

Prerequisites

Project dependencies

  • Python
    # in Linux
    sudo apt install python3
    
    # Or other OS
    https://www.python.org/
  • Jupyter notebook
    pip install jupyter
    pip install notebook
  • Other Python libraries (install using pip): sklearn, scipy, matplotlib, numpy, pandas, joblib, pickle

(back to top)

Installation

How to install and use your project

  1. Clone the repo
    git clone https://github.com/FedrianzD/Tubes-2-AI.git
  2. Change directory
    cd Tubes-2-AI
  3. Run the Notebook Program
    python3 src/Notebook.py

(back to top)

Instruction

To run the program you can simply run all in the src/Notebook.py file.

(back to top)

Features

1. Exploratory Data Analysis

2. Data Validation and Preprocessing

3. Model Prediction

  • KNN
  • Naive Bayes ID3

(back to top)

Task Distribution

NIM Tugas
13522020 Implementasi ID3, preprocessing, modelling dan pipeline
13522071 Implementasi Naive Bayes, pipelining
13522090 Implementasi KNN, data validation dan modelling
13522091 Inisialisasi notebook, EDA, preprocessing, data validation dan pipelining

Contributing

If you want to contribute or further develop the program, please fork this repository using the branch feature.
Pull Request is permited and warmly welcomed

(back to top)

Licensing

The code in this project is licensed under MIT license.


THANK YOU!

About

Implementation of KNN, Naive Bayes and ID3 ML Algorithms on UNSW-NB15 Dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.6%
  • Python 0.4%