This repository contains an implementation of a GAN + Transformer-based architecture for synthesizing tumors in mammograms using prior and current images. The model uses:
Dual Transformer Encoders
Variational Latent Space
Differentiable Blending Module
Swin Transformer Discriminator
├── dataset.py # Dataset loader
├── generator.py # Generator network
├── decoder.py # Transformer-based decoder
├── encoder.py # Transformer-based encoder
├── discriminator.py # Swin Transformer discriminator
├── losses.py # Loss functions
├── logger.py # Training logger
├── config.py # Hyperparameters & constants
├── seed.py # Random seed setup
├── train.py # Training script
├── test.py # Testing / inference script
└── README.md # Project documentation
pip install -r requirements.txtpython train.pypython test.py
