Skip to content

NFFT/pyANOVAapprox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyANOVAapprox

This package provides a framework for the method ANOVAapprox to approximate high-dimensional functions with a low superposition dimension or a sparse ANOVA decomposition from scattered data. The method has been dicussed and applied in the following articles/preprints:

  • D. Potts and M. Schmischke
    Interpretable transformed ANOVA approximation on the example of the prevention of forest fires
    arXiv, PDF
  • F. Bartel, D. Potts und M. Schmischke
    Grouped transformations and Regularization in high-dimensional explainable ANOVA approximation
    SIAM Journal on Scientific Computing (accepted)
    arXiv, PDF
  • D. Potts and M. Schmischke
    Interpretable approximation of high-dimensional data
    SIAM Journal on Mathematics of Data Science (accepted)
    arXiv, PDF, Software
  • D. Potts and M. Schmischke
    Learning multivariate functions with low-dimensional structures using polynomial bases
    Journal of Computational and Applied Mathematics 403, 113821, 2021
    DOI, arXiv, PDF
  • D. Potts and M. Schmischke
    Approximation of high-dimensional periodic functions with Fourier-based methods
    SIAM Journal on Numerical Analysis 59 (5), 2393-2429, 2021
    DOI, arXiv, PDF
  • L. Lippert, D. Potts and T. Ullrich
    Fast Hyperbolic Wavelet Regression meets ANOVA
    ArXiv: 2108.13197
    arXiv, PDF

pyANOVAapprox provides the following functionality:

  • approximation of high-dimensional periodic and nonperiodic functions with a sparse ANOVA decomposition
  • analysis tools for interpretability (global sensitvitiy indices, attribute ranking, shapley values)

Getting started

The pyANOVAapprox package can be installed via pip:

pip install -i https://test.pypi.org/simple/ pyANOVAapprox

Read the documentation for specific usage information.

Requirements

  • Python 3.8 or greater
  • pyGroupedTransforms 0.1.0 or greater
  • NumPy 2.0.0 or greater
  • SciPy 1.16.0 or greater

About

Approximation Package for High-Dimensional Functions in Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages