Project Overview
DataWizzy is an open-source Python package designed to assist data scientists and analysts by transforming natural language questions or requests into detailed, step-by-step instructional guides. Leveraging Large Language Models (LLMs), the tool interprets user queries related to data science and analytics and generates comprehensive guides that include explanations and code snippets using libraries like pandas, NumPy, Matplotlib, and Seaborn.
Key Features
- Natural Language Understanding
Query Interpretation: Accepts natural language questions or requests such as "How do I perform a linear regression analysis on my dataset?" or "What are the steps to clean missing data in pandas?"
Contextual Understanding: Understands the context and intent behind the queries to provide relevant instructions.
- Step-by-Step Instructional Guides
Detailed Explanations: Provides comprehensive explanations for each step involved in accomplishing the task.
Code Snippets: Includes executable code examples that users can copy and run in their own environments.
Best Practices: Recommends industry best practices and common pitfalls to avoid.
- Integration with Data Science Libraries
pandas, NumPy, Matplotlib, Seaborn: Generates instructions and code using these libraries for data manipulation and visualization.
Scikit-learn: Provides guides on machine learning tasks such as regression, classification, and clustering.
- Interactive Interface
Command-Line Interface (CLI): Users can input their questions directly into the CLI and receive instructional guides.
Jupyter Notebook Extension: An extension that allows users to generate guides within their notebooks.
Web-Based Interface: A user-friendly web app where users can input queries and receive formatted guides.
- LLM Integration with Safety Measures
Large Language Models: Utilizes models like OpenAI's GPT-4 or open-source alternatives for generating content.
Safety Checks: Implements content filtering and code safety checks to prevent harmful instructions.
Verification Step: Allows users to review the generated instructions and code before use.
Development Plan
Phase 1: Project Setup
Repository Initialization
Create GitHub Repository: Initialize a repository named DataWizzy.
Documentation: Add a detailed README.md explaining the project's purpose, features, and contribution guidelines.
Environment Setup
Python Environment: Set up a virtual environment and install necessary packages.
pandas
numpy
matplotlib
seaborn
scikit-learn
jupyter
transformers (for LLM integration)
openai (if using OpenAI's API)
Phase 2: Core Functionality Development
- Natural Language Processing Module
LLM Integration: Integrate an LLM to interpret user queries.
Prompt Engineering: Craft prompts that guide the LLM to generate step-by-step guides.
- Instruction Generation
Content Structuring: Develop a system to structure the LLM's output into clear, logical steps.
Code Generation: Extract and format code snippets from the LLM's response.
- Safety and Compliance
Content Filtering: Implement mechanisms to filter out inappropriate content.
Code Safety: Analyze generated code for potential security risks.
Phase 3: Interface Development
- Command-Line Interface (CLI)
Interactive CLI: Build a CLI tool where users can input questions and receive guides.
Formatting: Ensure the output is well-formatted with clear steps and code blocks.
- Jupyter Notebook Extension
Magic Commands: Create magic commands (e.g., %datawizzy) to generate guides within notebooks.
Inline Display: Show the instructional guides directly in the notebook cells.
- Web-Based Interface
Web App Development: Use Streamlit or Flask to develop a web app.
User Input: Provide an input field for questions.
Output Display: Present the guides with proper formatting and syntax highlighting.
Phase 4: Testing and Validation
- Use Case Scenarios
Test Queries: Develop a diverse set of test queries covering various topics.
Validation: Ensure the generated guides are accurate and helpful.
- User Feedback Loop
Feedback Mechanism: Implement a way for users to provide feedback on the guides.
Iterative Improvement: Use feedback to refine the system continuously.
Phase 5: Documentation and Examples
- Comprehensive Documentation
User Guides: Write detailed documentation on how to install and use the tool.
API Documentation: Provide documentation for developers.
- Examples and Tutorials
Sample Queries: Include examples of queries and the resulting guides.
Tutorial Videos: Create videos demonstrating how to use the tool effectively.
Implementation Details
- Environment Setup
a. Install Required Packages
pip install pandas numpy matplotlib seaborn scikit-learn jupyter transformers openai
OR
poetry add pandas numpy matplotlib seaborn scikit-learn jupy
ter transformers openai
b. Set Up Virtual Environment
bash
Copy code
python -m venv venv
source venv/bin/activate # On Windows use venv\Scripts\activate
- Project Structure
arduino
Copy code
DataWizzy/
├── datawizzy/
│ ├── init.py
│ ├── nlp_processor.py
│ ├── instruction_generator.py
│ ├── safety.py
│ └── interfaces/
│ ├── cli.py
│ ├── jupyter_extension.py
│ └── web_app.py
├── tests/
│ ├── test_nlp_processor.py
│ ├── test_instruction_generator.py
│ └── test_safety.py
├── examples/
├── docs/
├── README.md
├── requirements.txt
├── setup.py
└── LICENSE
- Core Modules
a. NLP Processor (nlp_processor.py)
Handles the interaction with the LLM.
python
Copy code
import openai
openai.api_key = api_key
prompt = f"Provide a detailed, step-by-step guide on how to {query} using Python."
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=1000,
temperature=0.5,
)
return response.choices[0].text.strip()
b. Safety Module (safety.py)
Ensures that generated content is appropriate and safe.
python
Copy code
pass
pass
c. Instruction Generator (instruction_generator.py)
Processes the LLM output and formats it.
python
Copy code
return formatted_text
- Interfaces
a. Command-Line Interface (cli.py)
python
Copy code
import argparse
from datawizzy.nlp_processor import NLPProcessor
from datawizzy.instruction_generator import InstructionGenerator
from datawizzy.safety import SafetyChecker
parser = argparse.ArgumentParser(description='DataWizzy CLI')
parser.add_argument('query', type=str, help='Your data science question')
args = parser.parse_args()
nlp = NLPProcessor(api_key='your-api-key')
safety = SafetyChecker()
generator = InstructionGenerator()
raw_instructions = nlp.generate_instructions(args.query)
instructions = generator.format_instructions(raw_instructions)
print(instructions)
print("The generated content was deemed unsafe.")
main()
b. Jupyter Notebook Extension (jupyter_extension.py)
python
Copy code
from IPython.core.magic import register_line_magic
from datawizzy.nlp_processor import NLPProcessor
from datawizzy.instruction_generator import InstructionGenerator
from datawizzy.safety import SafetyChecker
from IPython.display import display, Markdown
@register_line_magic
query = line.strip()
nlp = NLPProcessor(api_key='your-api-key')
safety = SafetyChecker()
generator = InstructionGenerator()
raw_instructions = nlp.generate_instructions(query)
instructions = generator.format_instructions(raw_instructions)
display(Markdown(instructions))
print("The generated content was deemed unsafe.")
c. Web-Based Interface (web_app.py)
python
Copy code
import streamlit as st
from datawizzy.nlp_processor import NLPProcessor
from datawizzy.instruction_generator import InstructionGenerator
from datawizzy.safety import SafetyChecker
st.title("DataWizzy")
query = st.text_input("Enter your data science question:")
nlp = NLPProcessor(api_key='your-api-key')
safety = SafetyChecker()
generator = InstructionGenerator()
raw_instructions = nlp.generate_instructions(query)
instructions = generator.format_instructions(raw_instructions)
st.markdown(instructions)
st.error("The generated content was deemed unsafe.")
- Testing
a. Write Unit Tests (tests/)
Test NLP Processor: Ensure that queries are properly sent and responses are received.
Test Instruction Generator: Check that formatting is applied correctly.
Test Safety Module: Verify that unsafe content is correctly identified.
python
Copy code
import unittest
from datawizzy.safety import SafetyChecker
safety = SafetyChecker()
content = "This is a safe instruction."
self.assertTrue(safety.check_content(content))
safety = SafetyChecker()
content = "This is unsafe content."
self.assertFalse(safety.check_content(content))
unittest.main()
- Documentation
API Reference: Use docstrings and tools like Sphinx to generate documentation.
User Guides: Provide step-by-step instructions on installation and usage.
Examples: Include practical examples in the examples/ directory.
Example Usage
- Command-Line Interface
bash
Copy code
python cli.py "clean a dataset with missing values using pandas"
kotlin
Copy code
Step 1: Import pandas library
import pandas as pd
Step 2: Load your dataset
python
Copy code
df = pd.read_csv('your_dataset.csv')
Step 3: Identify missing values
python
Copy code
print(df.isnull().sum())
Step 4: Drop rows with missing values
python
Copy code
df_cleaned = df.dropna()
Step 5: Alternatively, fill missing values
python
Copy code
df_filled = df.fillna(method='ffill')
...
shell
Copy code
### **2. Jupyter Notebook**
```python
%load_ext datawizzy
%datawizzy visualize the distribution of 'Age' column using a histogram
## Output
(Displays a step-by-step guide with code snippets on how to create a histogram of the 'Age' column.)
3. Web App
Step 1: Run the web app
bash
Copy code
streamlit run web_app.py
Step 2: Open the provided URL in your browser.
Step 3: Enter your question in the input field.
Step 4: Click "Generate Guide" to receive the instructional guide.