Skip to content

MichaelWorkineh/MediScan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MediScan

Overview

MediScan is a breast cancer detection system leveraging the power of YOLO v12 for accurate object detection. The project consists of a Python-based FastAPI backend for inference and a modern Next.js frontend for user interaction.

Features

  • High-Performance Detection: Uses YOLO v12 trained on medical imaging datasets.
  • Interactive UI: User-friendly interface built with Next.js, Tailwind CSS, and Shadcn/UI.
  • Fast Inference: Accelerated backend processing with FastAPI and OpenCV.
  • Visual Feedback: Displays annotated images with detected regions and confidence scores.

Technology Stack

Backend

  • Framework: FastAPI
  • Language: Python
  • ML Model: YOLO v12 (Ultralytics)
  • Image Processing: OpenCV, IPv6

Frontend

  • Framework: Next.js
  • Language: TypeScript
  • Styling: Tailwind CSS
  • UI Components: Radix UI / Shadcn

Project Structure

MediScan/
├── Backend/
│   ├── BackendLogic.py   # Main API entry point
│   └── best.pt           # Trained YOLO model weights
├── Frontend/
│   └── image-upload-api(1)/  # Next.js frontend application
└── README.md

Getting Started

Prerequisites

  • Python 3.8+
  • Node.js 18+ & npm

1. Backend Setup

Navigate to the backend directory:

cd Backend

Recommended: Create and activate a virtual environment:

# Windows
python -m venv venv
.\venv\Scripts\activate

# macOS/Linux
python3 -m venv venv
source venv/bin/activate

Install the required dependencies:

pip install fastapi uvicorn opencv-python numpy ultralytics python-multipart

Start the backend server:

uvicorn BackendLogic:app --reload

The API will be available at http://localhost:8000.

2. Frontend Setup

Navigate to the frontend directory:

cd Frontend/image-upload-api(1)

Install dependencies:

npm install

Start the development server:

npm run dev

Open your browser and navigate to http://localhost:3000 to use the application.

Usage

  1. Ensure both the backend and frontend servers are running.
  2. Open the frontend URL (http://localhost:3000).
  3. Upload a medical scan image using the interface.
  4. The system will process the image and display the detected results with bounding boxes and confidence scores.

License

MIT

About

Detecting Breast cancer using YOLO v12

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published