Skip to content

MehediAhamed/SynergiProtoNet

Repository files navigation

SynergiProtoNet_Bangla_OCR_Few_Shot_Learning

This project implements the SynergiProtoNet, a few-shot learning model for recognizing handwritten characters and digits in Bangla script. Based on the methodologies described in our paper, this model demonstrates the ability to perform high-accuracy recognition with limited labeled data, addressing challenges inherent to low-resource languages. It also demonstrates comparative analysis among different classical few shot learning approaches.

Prerequisites

Before you run this notebook, ensure that you have the following:

  • Python 3.10 or later
  • Pip package manager
  • Git CLI
  • Access to a GPU (recommended for faster computation)

Download Datasets

Performance Analysis

Monolingual Intra-Dataset Evaluation

Network 1-shot Acc(%) 1-shot F1 1-shot Recall 1-shot Precision 5-shot Acc(%) 5-shot F1 5-shot Recall 5-shot Precision 10-shot Acc(%) 10-shot F1 10-shot Recall 10-shot Precision
Matching 69.64 0.69 0.69 0.69 38.66 0.39 0.39 0.39 36.36 0.36 0.36 0.36
Simpleshot 69.42 0.70 0.71 0.70 75.68 0.78 0.78 0.77 82.9 0.82 0.82 0.82
Relation 77.10 0.76 0.76 0.76 85.58 0.87 0.87 0.87 83.2 0.83 0.83 0.83
BD-CSPN 69.68 0.71 0.71 0.71 76.58 0.76 0.76 0.76 83.48 0.82 0.82 0.82
Prototypical 74.48 0.74 0.75 0.74 87.88 0.87 0.87 0.87 87.56 0.87 0.87 0.87
SynergiProtoNet 79.1 0.79 0.79 0.79 88.95 0.88 0.88 0.88 90.04 0.90 0.90 0.90

Monolingual Inter-Dataset Evaluation

Network 1-shot Acc(%) 1-shot F1 1-shot Recall 1-shot Precision 5-shot Acc(%) 5-shot F1 5-shot Recall 5-shot Precision 10-shot Acc(%) 10-shot F1 10-shot Recall 10-shot Precision
Matching 48.6 0.52 0.51 0.52 41.8 0.39 0.4 0.39 26.9 0.26 0.26 0.26
Simpleshot 51.34 0.55 0.54 0.54 63.54 0.63 0.63 0.63 64.94 0.66 0.66 0.66
BD-CSPN 50.84 0.5 0.5 0.51 60.3 0.6 0.6 0.6 69.2 0.7 0.7 0.7
Prototypical 54.28 0.55 0.56 0.55 76.18 0.75 0.75 0.75 76.24 0.75 0.75 0.75
Synergi w/o pretrain 44.5 0.45 0.44 0.44 65.16 0.66 0.66 0.66 68.76 0.68 0.68 0.68
SynergiProtoNet 59.02 0.59 0.59 0.59 77.68 0.78 0.78 0.78 81.36 0.83 0.83 0.83
Relation 56.46 0.58 0.58 0.58 74.02 0.72 0.72 0.72 65.04 0.67 0.65 0.65

Cross-Lingual Performance Analysis

Network 1-shot Acc(%) 1-shot F1 1-shot Recall 1-shot Precision 5-shot Acc(%) 5-shot F1 5-shot Recall 5-shot Precision 10-shot Acc(%) 10-shot F1 10-shot Recall 10-shot Precision
Matching 52.84 0.52 0.52 0.52 26.68 0.27 0.27 0.27 37.58 0.38 0.38 0.38
Simpleshot 42.92 0.46 0.46 0.46 56.14 0.53 0.53 0.53 55.10 0.54 0.54 0.54
BD-CSPN 44.58 0.45 0.45 0.45 54.72 0.52 0.52 0.53 57.72 0.57 0.57 0.57
Prototypical 53.64 0.55 0.56 0.55 76.74 0.77 0.77 0.77 79.48 0.79 0.79 0.79
Synergi w/o pretrain 50.46 0.51 0.51 0.51 71.14 0.70 0.70 0.70 76.98 0.76 0.76 0.76
SynergiProtoNet 58.59 0.55 0.55 0.55 76.84 0.77 0.77 0.77 82.12 0.82 0.82 0.82
Relation 61.12 0.61 0.61 0.61 74.02 0.72 0.72 0.72 81.93 0.82 0.82 0.82

Split Digit Testing

Network 1-shot Acc(%) 1-shot F1 1-shot Recall 1-shot Precision 5-shot Acc(%) 5-shot F1 5-shot Recall 5-shot Precision 10-shot Acc(%) 10-shot F1 10-shot Recall 10-shot Precision
Matching 73.67 0.74 0.75 0.75 33.1 0.29 0.34 0.34 32.17 0.33 0.34 0.34
BD-CSPN 55.43 0.59 0.59 0.59 64.43 0.64 0.64 0.64 69.17 0.68 0.68 0.68
Simpleshot 65.6 0.61 0.62 0.61 72.9 0.7 0.71 0.73 76.97 0.76 0.76 0.76
Relation 64.97 0.63 0.64 0.64 79.83 0.8 0.79 0.8 81.37 0.83 0.83 0.83
Prototypical 66.57 0.65 0.65 0.65 76.33 0.75 0.74 0.74 87.1 0.86 0.86 0.86
Synergi w/o pretrain 46.47 0.48 0.47 0.47 52.6 0.53 0.53 0.53 57.6 0.57 0.57 0.57
SynergiProtoNet 37.4 0.37 0.37 0.37 83.73 0.83 0.83 0.83 88.3 0.87 0.87 0.87

License

This project is licensed under the MIT License - see the LICENSE file for details.

Cite

@inproceedings{MehediAhamed,
author = {Ahamed, Mehedi and Kabir, Radib and Dipto, Tawsif and Mushabbir, Mueeze and Ahmed, Sabbir and Kabir, Md},
year = {2024},
month = {12},
pages = {1-6},
title = {Performance Analysis of Few-Shot Learning Approaches for Bangla Handwritten Character and Digit Recognition},
doi = {10.1109/STI64222.2024.10951048}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •