Skip to content

Maybezsqs/Bayesian_statistics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

Bayesian_statistics

Bayesian statistics

\begin{align} KL(q_\theta(z)||p(z|D)) &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(z|D)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(z|D)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)p(D)}{p(D|z)p(z)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(D|z)p(z)}\right]\ &= -ELBO(q_{\theta}(z)) \end{align}

and

$$\text{log}p(x)=\text{log}p(x)\int q_{\theta}(z)dz$$

$$=\mathbb{E}_{q_{\theta}(z)}\left[\text{log}p(x)\right]$$

$$=\mathbb{E}_{q_{\theta}(z)}\left[\text{log}\frac{p(x,z)q_{\theta}(z)}{p(x|z)q_{\theta}(z)}\right]$$

$$=\mathbb{E}_{q_{\theta}(z)}\left[\text{log}\frac{p(x,z)}{q_{\theta}(z)}\right] + \mathbb{E}_{q_{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(x|z)}\right]$$

$$=ELBO(q_{\theta}(z)) + KL(q_{\theta}(z)||p(x|z))$$

About

Bayesian statistics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published