Bayesian statistics
\begin{align} KL(q_\theta(z)||p(z|D)) &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(z|D)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(z|D)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)p(D)}{p(D|z)p(z)}\right]\ &= \mathbb{E}{q{\theta}(z)}\left[\text{log}\frac{q_{\theta}(z)}{p(D|z)p(z)}\right]\ &= -ELBO(q_{\theta}(z)) \end{align}
and