Skip to content

LxMLearners/TriHSPAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

TriHSPAM: Triclustering Heterogeneous Longitudinal Clinical Data using Sequential Patterns

How to use 🧐

from TriHSPAM import TriHSPAM
import numpy as np

data = [
    [
        [2, 2, 3],
        [5, 0, 3],
        [9, 3, 5]
                        ],
    [
        ['y', 'x', 'z'],
        ['y', 'y', 'z'],
        ['z', 'z', 'y']
                        ],
    [
       [5, 5, 5],
       [3, 7, 0],
       [1, 2, 0],
                        ]
]

triclustering = TriHSPAM(symb_features_idx=[1],
                         num_features_idx=[0,2],
                         min_I=1,
                         min_J=0,
                         min_K=0,
                         n_bins=3,
                         time_relaxed=True,
                         spm_algo='fournier08closed')

triclustering.fit(data)

triclustering.triclusters_()

Experimental Data πŸ“ŠπŸ§ͺ

TriHSPAM effectiveness can be assessed with synthetic data with planted triclusters. Datasets are available in synthetic datasets folder together with their settings.

Citing the Paper πŸ“‘

If you use TriHSPAM in your research, please cite our paper:

TBA

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published