Skip to content
forked from wangyida/hineus

HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity

License

Notifications You must be signed in to change notification settings

LiAutoAD/HiNeuS

 
 

Repository files navigation

HiNeuS

Relightable toolkit for reconstructing 3DRealCar assets built on High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity

Project Page | Paper - ICCV 2025 [Highlight]

Installation

git clone https://github.com/LiAutoAD/HiNeuS.git
cd HiNeuS
pip install -r requirements.txt

Geometric learning

Training

General training API for nerf synthetic data and colmap project

# Nerf-synthetic data
python run_training.py --cfg configs/shape/nerf/general.yaml object=drums dataset_dir=${your-path}/dataset/nerf_synthetic

# COLMAP project
python run_training.py --cfg configs/shape/real/general.yaml object=sedan dataset_dir=${your-path}/dataset/real name={in-case-you-wanna-save-in-a-specifc-folder}

Intermediate results will be saved at data/train_vis. Models will be saved at data/model.

Mesh extraction

python extract_mesh.py --cfg configs/shape/real/general.yaml object=sedan dataset_dir=${your-path}/dataset/real name={in-case-you-wanna-save-in-a-specifc-folder}

The extracted meshes will be saved at data/meshes.

Material estimation

Training

# estimate BRDF of the "sedan" of a general COLMAP project
python run_training.py --cfg configs/material/real/general.yaml object=sedan dataset_dir=${your-path}/dataset/real mesh=${your-mesh-path}.ply

Intermediate results will be saved at data/train_vis. Models will be saved at data/model.

Extract materials

python extract_materials.py --cfg configs/material/syn/bell.yaml
python extract_materials.py --cfg configs/material/real/bear.yaml

The extracted materials will be saved at data/materials.

Relighting

python relight.py --blender <path-to-your-blender> \
                  --name bell-neon \
                  --mesh data/meshes/bell_shape-300000.ply \
                  --material data/materials/bell_material-100000 \
                  --hdr data/hdr/neon_photostudio_4k.exr \
                  --trans
                  
python relight.py --blender <path-to-your-blender> \
                  --name bear-neon \
                  --mesh data/meshes/bear_shape-300000.ply \
                  --material data/materials/bear_material-100000 \
                  --hdr data/hdr/neon_photostudio_4k.exr

The relighting results will be saved at data/relight with the directory name of bell-neon or bear-neon. This command means that we use neon_photostudio_4k.exr to relight the object.

Acknowledgement

Thanks for the open sourced project of NeRO and instant-angelo We highlight the practical adaptation for 3DGS assets in 3DRealCar dataset

Citation

@inproceedings{wang2025hineus,
  title={HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity},
  author={Wang, Yida and Zhang, Xueyang and Zhan, Kun and Jia, Peng and Lang, Xianpeng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2025}
}

@inproceedings{du20253drealcar,
  title={3drealcar: An in-the-wild rgb-d car dataset with 360-degree views},
  author={Du, Xiaobiao and Wang, Yida and Sun, Haiyang and Wu, Zhuojie and Sheng, Hongwei and Wang, Shuyun and Ying, Jiaying and Lu, Ming and Zhu, Tianqing and Zhan, Kun and others},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={26488--26498},
  year={2025}
}

About

HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%