This repository contains the code for Optimizing Decoding Paths in Masked Diffusion Models by Quantifying Uncertainty.
Create a conda environment with the required dependencies:
conda env create -f requirements.yaml
conda activate dentropyRun sampling experiments with different methods:
# Random
python main.py sampling=random
# Best-of-N sampling
python main.py sampling=bon
# SMC sampling
python main.py sampling=smc
# Greedy sampling
python main.py sampling=greedyUsage:
python main.py sampling=random \
sampling.steps=128 \
sampling.num_sample_batches=16 \
seed=42Parameters:
sampling.steps: Number of diffusion steps (default: 128)sampling.num_sample_batches: Number of runs to execute (default: 8)
Usage:
python main.py sampling=bon \
sampling.num_particles=8 \
sampling.steps=128 \
seed=42Parameters:
sampling.num_particles: Number of samples to generate (N) (default: 8)sampling.steps: Diffusion steps (default: 128)sampling.num_sample_batches: Number of runs (default: 8)
Usage:
python main.py sampling=smc \
smc.num_particles=8 \
smc.resample_interval=50 \
smc.lambda_weight=5.0 \
seed=42Parameters:
smc.num_particles: Number of particles to maintain (default: 8)smc.resample_interval: Steps between resampling (default: 50)smc.lambda_weight: Temperature parameter for potential function (default: 5.0)smc.potential_type: Potential function type, 'max' or 'mean' (default: 'max')
Usage:
python main.py sampling=greedy \
greedy.num_candidates=8 \
greedy.beam_size=1 \
seed=42Parameters:
greedy.num_candidates: Number of candidates per beam at each step (default: 8)greedy.beam_size: Number of beams to maintain (default: 1)beam_size=1: Pure greedy searchbeam_size>1: Beam search
- ✅ Implementation of Denoising Entropy
- ✅ Implementation of Best-of-N and SMC
- ✅ Evaluation on MDLM
- ❌ Evaluation on LLaDA
This repository is built upon: MDLM
@article{chen2025optimizing,
title={Optimizing Decoding Paths in Masked Diffusion Models by Quantifying Uncertainty},
author={Chen, Ziyu and Jiang, Xinbei and Sun, Peng and Lin, Tao},
journal={arXiv preprint arXiv:2512.21336},
year={2025}
}