This repository reproduces and extends experiments from
Foundations of Computer Vision (Torralba, Isola, Freeman, 2024).
We explore:
-- Autoencoder Training on a synthetic dataset of colored shapes.
-- Contrastive Learning (alignment + uniformity) to learn 2D embeddings that capture either color or shape invariances based on different data augmentations.
colored_shapes_project/
├── dataset.py
├── loss_functions_.py
├── training.py
├── models.py
├── autoencoder_experiment.py
├── contrastive_experiment.py
├── analyze_autoencoder_embeddings.py
├── visualize_embeddings.py
└── README.md
probably explain what each does here
-- clone
-- install dependencies
pip install torch torchvision torchaudio
pip install numpy pillow matplotlib
pip install scikit-learn
blah blah blah we put stuff here later
-- Foundations of Computer Vision (Torralba, Isola, Freeman, 2024).
-- Wang & Isola (ICML 2020), Understanding Contrastive Representation Learning Through Alignment and Uniformity on the Hypersphere.
-- Kyle Dietrich, Dietrich.191@osu.edu
-- Preston Hines, Hines.470@osu.edu