Skip to content

Keerthu-k/text_embedding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

Semantic search demo using SentenceTransformers

What this does

  • Encodes a small corpus of example documents using a SentenceTransformer
  • Encodes queries and computes cosine similarity to the corpus
  • Prints the top-k most similar corpus sentences for each query

Requirements

  • Python 3.8+
  • sentence-transformers (pip install sentence-transformers)
  • torch (pip install torch) — CPU or GPU build

Usage

  • Install dependencies: pip install sentence-transformers torch
  • Run: python semantic_search.py

Notes

  • The script uses the "all-MiniLM-L6-v2" model by default.
  • Tensors are kept in memory; set convert_to_tensor=True to place tensors on GPU if available.
  • Edit the corpus, queries, or top_k to adapt the demo to your needs.

About

Semantic search demo using SentenceTransformers

Resources

Stars

Watchers

Forks

Languages