Skip to content

Using DCGAN model generate deer picture in cifar10

Notifications You must be signed in to change notification settings

JusticeLeee/DC_GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Using DCGAN model generate deer picture in cifar10

將訓練資料透過捲積神經網路經過訓練產生鹿的圖像
相較於傳統的深度學習網路,CNN把全連接層都換成了卷積層,並透過跨步卷積的方式
來取得局部特徵及縮減圖片大小,達到大幅度提高訓練速度的效果

Environment

  • Jupyter Notebook
  • Python 3.6
  • Tensorflow 1.9-GPU

Archeitecture

error

Note:此架構之shape-size僅為示意圖,與本project不同

DCGAN's advantages compare to GAN

  • In GAN model, both generator and discriminator use Fully Connected Layer, but DCGAN use Convolution Neural Network archeitecture.
  • Both Genrator and Discriminator use Batch Normalization for speeding up calculation.
  • Both Genrator and Discriminator different from traditional CNN ,they don't use pooling layer.
  • Generator use tansposed convolution layer ,as known as deconvolution ,and Discrinator use convolution layer.
Note:Generator's final layer use tanh,and discriminator's is sigmoid.

Result

error

加載說明

若透過網頁載入此ipynb文件失敗,可直接透過此連結查閱

Reference:https://arxiv.org/abs/1511.06434

About

Using DCGAN model generate deer picture in cifar10

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published