將訓練資料透過捲積神經網路經過訓練產生鹿的圖像
相較於傳統的深度學習網路,CNN把全連接層都換成了卷積層,並透過跨步卷積的方式
來取得局部特徵及縮減圖片大小,達到大幅度提高訓練速度的效果
- Jupyter Notebook
- Python 3.6
- Tensorflow 1.9-GPU
Note:此架構之shape-size僅為示意圖,與本project不同
- In GAN model, both generator and discriminator use Fully Connected Layer, but DCGAN use Convolution Neural Network archeitecture.
- Both Genrator and Discriminator use Batch Normalization for speeding up calculation.
- Both Genrator and Discriminator different from traditional CNN ,they don't use pooling layer.
- Generator use tansposed convolution layer ,as known as deconvolution ,and Discrinator use convolution layer.
Note:Generator's final layer use tanh,and discriminator's is sigmoid.
若透過網頁載入此ipynb文件失敗,可直接透過此連結查閱
Reference:https://arxiv.org/abs/1511.06434

