Skip to content
View J-WU1's full-sized avatar
  • TVH Consulting
  • Paris, France (Open to relocate)
  • 21:12 (UTC +01:00)
  • LinkedIn in/wu-jacques

Block or report J-WU1

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
J-WU1/README.md

Hi there, I'm Jacques WU! 👋

🚀 Data Consultant (Work-Study) | Future Engineer | Microsoft Fabric Enthusiast

I am currently an Engineering Student at ECE Paris and I work as an Data Consultant (Work-Study) at TVH Consulting. I specialize in the Microsoft Ecosystem, designing and implementing end-to-end analytics solutions using Microsoft Fabric (Data Factory, Synapse, OneLake), Power BI and Azure.

My background in operations management has given me a strong business acumen, which I now combine with technical expertise to turn raw data into actionable insights.

🎯 Current Goal: I am seeking a 3 to 4-month International Internship (Data Engineering / Data Science) starting in May 2026.


🛠️ Technical Arsenal

Domain Stack & Tools
Microsoft Fabric & Cloud Fabric (Data Factory, Synapse, OneLake), Power BI (Advanced DAX), Azure (Data Lake, SQL DB)
Data Engineering Python (Pandas, PySpark, NumPy), SQL, ETL/ELT Pipelines, Medallion Architecture
Data Science Jupyter Notebooks, Scikit-Learn, Seaborn, Matplotlib
Tools & Versioning Git, GitHub

📂 Featured Projects

Here is a selection of projects demonstrating my ability to cover the full data lifecycle, from ingestion to visualization.

Project Description Tech Stack
⚽ Football Market Value Analysis A complete BI project: ETL with Power Query, DAX modeling, and interactive Power BI dashboard to predict player values. Power BI, DAX, Power Query
🎬 Netflix Catalog Trends Comprehensive interactive dashboard designed in Tableau to explore content trends and streaming patterns. Tableau, Data Viz
🐍 Exploratory Data Analysis Deep dive into a dataset using Python libraries to extract statistical trends and correlations. Python, Pandas, Seaborn

(Note: Click on the project titles to view the code and dashboards)


💼 Professional Experience

  • Data Consultant (Work-Study) at TVH Consulting (Nov 2025 - Present)
    • Implementing Medallion Architecture using Lakehouse & Warehouse strategies.
    • Building ETL pipelines with Dataflow Gen2 & Spark Notebooks.
    • Designing Semantic Models for client reporting.

🏆 Certifications

  • Microsoft DP-600: Fabric Analytics Engineer Associate (In Preparation)
  • Microsoft DP-700: Fabric Data Engineer Associate (In Preparation)

🇫🇷 Version Française

Apprenti Consultant Data chez TVH Consulting | Étudiant à l'ECE Paris

Actuellement en alternance, je construis des solutions de données modernes sur l'écosystème Microsoft (Fabric, Azure, Power BI). Je combine une expertise technique (Architecture Médaillon, Data Engineering) avec une forte compréhension des enjeux business issue de mon expérience de manager.

📍 Recherche Actuelle : Je suis à la recherche d'un stage à l'international (USA/Europe/Asie) de 3 à 4 mois à partir de Mai 2026 pour valider mon diplôme d'ingénieur.

Compétences Clés :

  • Data Engineering : Pipelines ETL/ELT, Spark, SQL, Python.
  • Microsoft Fabric : Data Factory, Synapse, OneLake.
  • Visualisation : Power BI, Tableau.

📫 Contact : LinkedIn

Pinned Loading

  1. Netflix-Catalog-Analysis Netflix-Catalog-Analysis Public

    Interactive Tableau dashboard exploring Netflix content trends (Movies vs TV Shows). Features advanced filtering, time-series analysis, and visual storytelling.

  2. Football-Market-Value-Analysis Football-Market-Value-Analysis Public

    End-to-end Power BI project analyzing football player market values. Features data cleaning (Power Query), advanced DAX modeling, and interactive visualization.

  3. Video-Games-Sales-EDA Video-Games-Sales-EDA Public

    Exploratory Data Analysis (EDA) of video game sales trends using Python. Features data cleaning with Pandas and statistical visualization with Seaborn/Matplotlib.

    Jupyter Notebook