Skip to content

Igkho/CropAndWeedDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crop And Weed Detection

Training of Yolo CNN to detect sprouts types

Features

  • Analyzing CropAndWeed dataset
  • Converting Fine24 subset to 1024x1024 Yolo format
  • Training Yolo CNN to detect sprouts types
  • Annotating the video sample using trained detector
  • Using ByteTrack objects tracking algorithm with velocity filtering and temporal class smoothing

Requirements

This project requires Python version from 3.10 to 3.13.

For environment installation use

pip install -r requirements.txt

Quantitative Metrics

Overall for 24 classes:

Precision: 0.80

Recall: 0.75

mAP50: 0.81

mAP50-95: 0.60

Inference Speed (Pytorch)

GPU: NVIDIA GeForce RTX 3060 Ti

Resolution: 1024x1024

Batch size: 1

Latency: ~28ms

FPS: 35

Examples

Original video:

originalvideo

Annotated video:

annotatedvideo

About

Training of Yolo CNN to detect sprouts types

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published