Skip to content

Security Analytics System is a SOC-style web application that analyzes authentication logs to detect brute-force attacks and anomalous behavior using rule-based logic and machine learning. It provides risk scoring, threat intelligence tracking, and a real-time cyberpunk-themed dashboard for security monitoring.

Notifications You must be signed in to change notification settings

IQRAZAM/security-analytics-system

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Security Analytics System (CyberSOC Dashboard)

Security Analytics Python Flask ML


πŸ”Ή Project Overview

The Security Analytics System is a mini SOC (Security Operations Center) style dashboard that demonstrates how cybersecurity systems monitor, analyze, and detect threats in real time.

It reads authentication logs, detects suspicious activity like brute-force attacks, performs risk scoring, tracks repeat offenders (threat intelligence), and even applies ML/Transformer-based anomaly detection to identify unusual patterns.

The system provides a professional, cyberpunk-themed dashboard to visualize all alerts and risk levels dynamically.


πŸ”Ή Key Features

  • Log Parsing: Reads structured or unstructured authentication logs.
  • Rule-Based Detection: Detects brute-force attacks and other suspicious behavior based on thresholds.
  • Risk Scoring: Assigns severity to threats (HIGH / MEDIUM / LOW) for prioritization.
  • Threat Intelligence: Tracks repeat offenders and counts how many times each IP triggered alerts.
  • ML/Transformer Anomaly Detection: Flags unusual login patterns using embeddings and Isolation Forest.
  • Live Dashboard: Interactive web interface using Flask and Bootstrap with auto-refresh.
  • Cyberpunk UI: Dark theme, neon highlights, hover effects, professional look.

πŸ”Ή Tech Stack

  • Backend: Python, Flask
  • Machine Learning: Transformers (DistilBERT), scikit-learn (Isolation Forest)
  • Frontend: HTML, CSS, Bootstrap 5, JavaScript
  • Environment: Python virtual environment (venv)
  • Optional: SQLite or JSON for persistence

πŸ”Ή System Architecture

          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
          β”‚   sample_logs.log   β”‚
          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
             β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
             β”‚ Log Parser    β”‚
             β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚ Rule-Based Detection       β”‚
      β”‚ - Brute Force              β”‚
      β”‚ - Failed Login Threshold   β”‚
      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ Threat Intelligence      β”‚
       β”‚ - Track repeat offenders β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ ML / Transformer Module  β”‚
       β”‚ - Anomaly Detection      β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
            β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚ Flask Dashboard β”‚
            β”‚ - Alerts Table  β”‚
            β”‚ - Risk Levels   β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

---

## Installation
1. Clone repo:
```bash
    git clone https://github.com/yourusername/security-analytics-system.git
    cd security-analytics-system
2.Create & activate venv:
    python -m venv venv
    venv\Scripts\Activate
3.Install dependencies:
    pip install -r requirements.txt
4.Run Flask app:
    python app/main.py
5.Open browser: http://127.0.0.1:5000/

## πŸ”Ή Usage

- Dashboard auto-refreshes every 5 seconds.  
- **Threat Types:** Brute Force, Anomalous Log Detected  
- **Risk Levels:** Displayed with neon badges  
  - HIGH β†’ Red  
  - MEDIUM β†’ Orange  
  - LOW β†’ Green  
- **Threat Count:** Number of times an IP triggered alerts  
- **Note:** Demo uses sample IPs; system is fully scalable for thousands of logs.

## πŸ”Ή Future Enhancements

- Real-time log streaming from servers or applications  
- Interactive charts to visualize threat trends over time  
- Database integration (SQLite/MySQL) for persistent threat tracking  
- Email or Slack notifications for HIGH-risk threats  
- Advanced ML models for predictive threat detection and anomaly scoring

About

Security Analytics System is a SOC-style web application that analyzes authentication logs to detect brute-force attacks and anomalous behavior using rule-based logic and machine learning. It provides risk scoring, threat intelligence tracking, and a real-time cyberpunk-themed dashboard for security monitoring.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published