Skip to content

HailiJia/CECAM_ML_for_XAS_tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Spectroscopy Masterclass Tutorial: From XAS to Machine Learning

This repository contains materials from the Spectroscopy Masterclass tutorial delivered at the CECAM workshop, held at the Rutherford Appleton Laboratory, UK (home of the Diamond Light Source synchrotron).

The tutorial provides a hands-on, end-to-end workflow for going from raw X-ray Absorption Spectroscopy (XAS) data to trustworthy machine learning models.

πŸ—‚ Contents

  • Notebooks
    • Database
    • Data quality checks and preprocessing
    • Comparison with different XAS simulation codes
    • Generating simulated spectra with FDMNES
    • Feature engineering for spectroscopy data
    • ML pipelines with CDF+XGBoost, and PCA+MLP/1D-CNN
    • Model validation and transfer to experimental spectra
    • Hyperparameter tuning

πŸ“¦ Dependencies

Required

  • numpy
  • matplotlib
  • scikit-learn
  • scipy
  • xgboost (on macOS also install libomp; with conda: conda install -c conda-forge libomp xgboost)
  • torch (PyTorch)
  • pymatgen

Optional (for code in the markdown cells)

  • optuna or scikit-optimize (Bayesian HPO)
  • shap (feature attributions for tree models)

About

Materials for ML for XAS tutorial

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published