Skip to content

HPCI-Lab/FBK-Bench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FBK Benchmarks

uses

Summary

Benchmark Model Type Resource Why
Compute-memory-bound Very deep MLP Compute / FLOPs Large dense layers + Small dataset
I/O-bound Small CNN + heavy augmentation Disk + CPU Slow transforms + Small batches
ML Scaling MLP Loss, Compute, Data and Parameters Reproduce Scaling Laws

Use case 1: Compute-Memory bound ML training

Roofline

Use case 2: I/O bound ML training

GPU usage Memory usage
GPU Memory

Use case 3: Simple ML training

Roofline

Setup

pip install -r requirements.txt

General folder creation

python src/preprocess/setup.py

Create the MNIST I/O dataset by running:

python src/preprocess/create_MNIST_ds.py

Running

python src/compute_bound.py --batch_size 64 --params 256
python src/io_bound.py --tform small
python src/ml_usecase.py --params 64 --epochs 1 --samples 4096 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages