| Benchmark | Model Type | Resource | Why |
|---|---|---|---|
| Compute-memory-bound | Very deep MLP | Compute / FLOPs | Large dense layers + Small dataset |
| I/O-bound | Small CNN + heavy augmentation | Disk + CPU | Slow transforms + Small batches |
| ML Scaling | MLP | Loss, Compute, Data and Parameters | Reproduce Scaling Laws |
| GPU usage | Memory usage |
|---|---|
![]() |
![]() |
pip install -r requirements.txtGeneral folder creation
python src/preprocess/setup.pyCreate the MNIST I/O dataset by running:
python src/preprocess/create_MNIST_ds.pypython src/compute_bound.py --batch_size 64 --params 256python src/io_bound.py --tform smallpython src/ml_usecase.py --params 64 --epochs 1 --samples 4096 



