Data science friendly ORM (Object Relational Mapping) library combining Python, Pandas, and various SQL dialects For full documentation see official documentation
Use the package manager pip to install dbhydra.
pip install dbhydraimport dbhydra.dbhydra_core as dh
db1=dh.db()
table1 = dh.Table(db1,"test",["test1","test2","test3","test4"],["int","int","int","int"])
#table1.drop()
#table1.create()
#rows=[[1,2,3,4],[5,4,7,9]]
#table1.insert(rows)
list1=table1.select("SELECT * FROM test")
print(list1)
#list2=table1.select_all()
#print(list2)
#table1.drop()
table1.export_to_xlsx()
tables=db1.get_all_tables()
table_dict=db1.generate_table_dict()
print(tables)
columns=table_dict['test'].get_all_columns()
types=table_dict['test'].get_all_types()
print(columns,types)
table_test=dh.Table.init_all_columns(db1,"test")
print(table_test.columns)
table2 = dh.Table(db1,"test_new",["id","test2"],["int","nvarchar(20)"])
#table2.create()
#table2.drop()Aims: Easy integration with Pandas, SQL SERVER/MySQL database, and exports/imports to/from excel/CSV format
Done: Table functions (Create, Drop, Select, Update, Insert, and Delete) should be working fine
Todo: Group by, Order by, Where, Linking of FK, Customizable PK,...
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.