combatlearn makes the popular ComBat (and CovBat) batch-effect correction algorithm available for use into machine learning frameworks. It lets you harmonise high-dimensional data inside a scikit-learn Pipeline, so that cross-validation and grid-search automatically take batch structure into account, without data leakage.
Three methods:
method="johnson"- classic ComBat (Johnson et al., 2007)method="fortin"- neuroComBat (Fortin et al., 2018)method="chen"- CovBat (Chen et al., 2022)
pip install combatlearnFull documentation is available at combatlearn.readthedocs.io
The documentation includes:
import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from combatlearn import ComBat
df = pd.read_csv("data.csv", index_col=0)
X, y = df.drop(columns="y"), df["y"]
batch = pd.read_csv("batch.csv", index_col=0, squeeze=True)
diag = pd.read_csv("diagnosis.csv", index_col=0) # categorical
age = pd.read_csv("age.csv", index_col=0) # continuous
pipe = Pipeline([
("combat", ComBat(
batch=batch,
discrete_covariates=diag,
continuous_covariates=age,
method="fortin", # or "johnson" or "chen"
parametric=True
)),
("scaler", StandardScaler()),
("clf", LogisticRegression())
])
param_grid = {
"combat__mean_only": [True, False],
"clf__C": [0.01, 0.1, 1, 10],
}
grid = GridSearchCV(
estimator=pipe,
param_grid=param_grid,
cv=5,
scoring="roc_auc",
)
grid.fit(X, y)
print("Best parameters:", grid.best_params_)
print(f"Best CV AUROC: {grid.best_score_:.3f}")For a full example of how to use combatlearn see the notebook demo
The following section provides a detailed explanation of all parameters available in the scikit-learn-compatible ComBat class. For complete API documentation, see the API Reference.
| Parameter | Type | Default | Description |
|---|---|---|---|
batch |
array-like or pd.Series | required | Vector indicating batch assignment for each sample. This is used to estimate and remove batch effects. |
discrete_covariates |
array-like, pd.Series, or pd.DataFrame | None |
Optional categorical covariates (e.g., sex, site). Only used in "fortin" and "chen" methods. |
continuous_covariates |
array-like, pd.Series or pd.DataFrame | None |
Optional continuous covariates (e.g., age). Only used in "fortin" and "chen" methods. |
| Parameter | Type | Default | Description |
|---|---|---|---|
method |
str | "johnson" |
ComBat method to use:
|
parametric |
bool | True |
Whether to use the parametric empirical Bayes formulation. If False, a non-parametric iterative scheme is used. |
mean_only |
bool | False |
If True, only the mean is corrected, while variances are left unchanged. Useful for preserving variance structure in the data. |
reference_batch |
str or None
|
None |
If specified, acts as a reference batch - other batches will be corrected to match this one. |
covbat_cov_thresh |
float, int | 0.9 |
For "chen" method only: Cumulative variance threshold |
eps |
float | 1e-8 |
Small jitter value added to variances to prevent divide-by-zero errors during standardization. |
The plot_transformation method allows to visualize the ComBat transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by ComBat using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
For further details see the API Reference and the notebook demo.
The compute_batch_metrics method provides quantitative assessment of batch correction quality. It computes metrics including Silhouette coefficient, Davies-Bouldin index, kBET, LISI, and variance ratio for batch effect quantification, as well as k-NN preservation and distance correlation for structure preservation.
For further details see the API Reference and the notebook demo.
Pull requests, bug reports, and feature ideas are welcome: feel free to open a PR!
Ettore Rocchi @ University of Bologna
If combatlearn is useful in your research, please cite the paper introducing this Python package:
Rocchi, E., Nicitra, E., Calvo, M. et al. Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy. BMC Microbiol (2026). https://doi.org/10.1186/s12866-025-04657-2
@article{Rocchi2026,
author = {Rocchi, Ettore and Nicitra, Emanuele and Calvo, Maddalena and Cento, Valeria and Peiretti, Laura and Asif, Zian and Menchinelli, Giulia and Posteraro, Brunella and Sala, Claudia and Colosimo, Claudia and Cricca, Monica and Sambri, Vittorio and Sanguinetti, Maurizio and Castellani, Gastone and Stefani, Stefania},
title = {Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy},
journal = {BMC Microbiology},
year = {2026},
doi = {10.1186/s12866-025-04657-2},
url = {https://doi.org/10.1186/s12866-025-04657-2}
}This project builds on the excellent work of the ComBat family of harmonisation methods. Please consider citing the original papers:
-
ComBat - Johnson WE, Li C, Rabinovic A. Biostatistics. 2007. doi: 10.1093/biostatistics/kxj037
-
neuroCombat - Fortin JP et al. Neuroimage. 2018. doi: 10.1016/j.neuroimage.2017.11.024
-
CovBat - Chen AA et al. Hum Brain Mapp. 2022. doi: 10.1002/hbm.25688
