Skip to content

Logseq Spring Thing Immersive & Agentic Knowledge Development Engine

License

Notifications You must be signed in to change notification settings

DreamLab-AI/VisionFlow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VisionFlow

VisionFlow

Real-Time 3D Knowledge Graphs with Autonomous AI Agents

Build Version License Rust CUDA Neo4j

100,000+ nodes at 60 FPS | 55x GPU acceleration | 80% bandwidth reduction


VisionFlow Demo

Quick Start | Documentation | Benchmarks | Roadmap


What is VisionFlow?

VisionFlow transforms static documents into living knowledge ecosystems. Deploy autonomous AI agents that continuously analyse your data, discovering connections while you explore results in an immersive 3D space with your team.

Your Data --> AI Agent Teams --> Knowledge Graph --> 3D Visualisation --> Team Collaboration

Why Choose VisionFlow?

Feature VisionFlow Traditional Tools
Performance 60 FPS @ 100K nodes (GPU) 4-15 FPS (CPU only)
Latency 10ms WebSocket updates 50-100ms+
Privacy Self-hosted, your infrastructure Third-party APIs
Collaboration Real-time multi-user 3D Single-user text output
Intelligence Autonomous 24/7 AI agents Reactive query-based
Auditability Git version control No transparency

Quick Start

Deploy in under 60 seconds:

git clone https://github.com/DreamLab-AI/VisionFlow.git
cd VisionFlow && cp .env.example .env
docker-compose --profile dev up -d

Access your instance:

Service URL Description
Frontend http://localhost:3001 3D visualisation interface
Neo4j Browser http://localhost:7474 Graph database explorer
API http://localhost:4000/api REST & WebSocket endpoints

Your AI agents begin analysing data immediately.

Native Installation (Rust + CUDA)
# Prerequisites
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# Install CUDA 12.4: https://developer.nvidia.com/cuda-downloads

# Build and run
git clone https://github.com/DreamLab-AI/VisionFlow.git
cd VisionFlow && cp .env.example .env
cargo build --release --features gpu
cd client && npm install && npm run build && cd ..
./target/release/webxr

Key Features

GPU-Accelerated Physics

  • 100+ CUDA kernels across 13 modules
  • 55x faster than CPU physics
  • 100K+ nodes at 60 FPS
  • Force-directed layouts in real-time

Autonomous AI Agents

  • 50+ concurrent agents with specialised roles
  • Microsoft GraphRAG integration
  • Multi-hop reasoning across domains
  • Continuous 24/7 knowledge discovery

Ontology Intelligence

  • OWL 2 EL reasoning via Whelk-rs
  • 10-100x faster inference
  • Semantic physics for meaningful layouts
  • Automatic contradiction detection

Binary Protocol V2

  • 36-byte messages (80% smaller than JSON)
  • 6.9x lower latency end-to-end
  • Sub-10ms WebSocket updates
  • Zero-copy serialisation

Real-Time Collaboration

  • Multi-user synchronisation
  • Independent camera controls
  • Voice-to-voice AI interaction
  • Spatial audio via WebRTC

Immersive XR

  • Meta Quest 3 support (Beta)
  • Hand tracking & controllers
  • Force-directed 3D physics
  • Vircadia integration (planned)

Performance

Benchmarks (AMD Ryzen 9 5950X + RTX 4080)

Metric Result Notes
Max Nodes @ 60 FPS 180,000 GPU-accelerated physics
Max Nodes @ 30 FPS 450,000 Instanced rendering
Physics Speedup 55x GPU vs multi-threaded CPU
WebSocket Latency 10ms Binary protocol V2
Bandwidth Reduction 80% 3.6 MB vs 18 MB per frame
Concurrent Users 250+ Stress-tested 48 hours

GPU vs CPU Physics (100K nodes, 200K edges)

Operation GPU (CUDA) CPU Speedup
Force Calculation 2.3ms 145ms 63x
Position Update 0.4ms 12ms 30x
Collision Detection 1.8ms 89ms 49x
Total Frame 4.5ms 246ms 55x
View Detailed Benchmarks

Scalability by Graph Size

Nodes Edges Frame Time FPS GPU Memory
1K 2K 0.08ms 12,500 4 MB
10K 20K 0.5ms 2,000 40 MB
100K 200K 4.5ms 222 400 MB
500K 1M 18ms 56 2 GB
1M 2M 35ms 29 4 GB

Comparison with Alternatives (100K nodes)

Solution FPS Latency Bandwidth GPU Memory
VisionFlow 60 10ms 3.6 MB 400 MB
Neo4j Bloom 25 45ms 18 MB 1.2 GB
GraphXR 35 28ms 8 MB 650 MB
Gephi 8 N/A N/A N/A
Cytoscape 12 N/A N/A N/A

Full benchmarks: docs/reference/performance-benchmarks.md


Architecture

flowchart TB
    subgraph Client["Client Layer"]
        React["React + Three.js"]
        WebXR["WebXR / Quest 3"]
        Voice["Voice UI"]
    end

    subgraph Server["Rust Server (Actix)"]
        subgraph Actors["Actor System"]
            GS["GraphState"]
            PO["PhysicsOrchestrator"]
            SP["SemanticProcessor"]
            CC["ClientCoordinator"]
        end
        HP["Hexagonal Ports"]
    end

    subgraph Data["Data Layer"]
        Neo4j[(Neo4j 5.13)]
    end

    subgraph GPU["GPU Compute"]
        CUDA["100+ CUDA Kernels"]
    end

    Client <-->|"36-byte Binary Protocol"| Server
    Server <--> Neo4j
    Server <--> CUDA

    style Client fill:#e1f5ff,stroke:#0288d1
    style Server fill:#fff3e0,stroke:#ff9800
    style Data fill:#f3e5f5,stroke:#9c27b0
    style GPU fill:#e8f5e9,stroke:#4caf50
Loading

Core Design Principles

Principle Implementation
Server-Authoritative Neo4j is the single source of truth
Binary Protocol 36-byte WebSocket messages (80% bandwidth reduction)
GPU Offloading Physics, clustering, pathfinding accelerated 55x
Actor System 21 specialised actors for state, physics, semantics
Event-Driven Domain events with pub/sub for loose coupling

Deep Dive: Architecture Overview | Hexagonal CQRS | Actor System


Technology Stack

Layer Technology
Backend Rust 1.75+, Actix-web 4.11, Hexagonal Architecture
Database Neo4j 5.13 (neo4rs)
GPU Compute CUDA 12.4, cudarc, cust (100+ kernels)
Reasoning OWL 2 EL, Whelk-rs, horned-owl
Frontend React 18, Three.js (React Three Fiber), TypeScript
XR Babylon.js, WebXR, Meta Quest 3
AI MCP Protocol, Claude, Microsoft GraphRAG
Networking Binary WebSocket, QUIC/WebTransport (quinn)

Use Cases

Research Teams

  • Literature review automation - AI agents continuously analyse papers, surface connections
  • Ontology development - OWL reasoning validates knowledge structures
  • Collaborative exploration - Multi-user 3D navigation of research landscapes

Enterprise Knowledge Management

  • Corporate knowledge graphs - Integrate documents, wikis, databases
  • AI-assisted discovery - Find hidden relationships across silos
  • Audit compliance - Git-versioned changes with full provenance

AI/ML Pipelines

  • GraphRAG integration - Enhance LLM context with structured knowledge
  • Training data curation - Visual exploration of dataset relationships
  • Model interpretability - Visualise attention patterns and embeddings

Healthcare & Life Sciences

  • SNOMED CT / Gene Ontology - Whelk-rs handles 354K+ class ontologies
  • Clinical decision support - Real-time reasoning over medical knowledge
  • Drug discovery - Visualise compound-target-pathway relationships

Documentation

VisionFlow uses the Diataxis framework for organised documentation:

Type Purpose Start Here
Tutorials Learning-oriented Installation, First Graph
How-To Guides Task-oriented Agent Orchestration, XR Setup
Explanations Understanding-oriented Architecture, Semantic Physics
Reference Information-oriented REST API, WebSocket Protocol

Complete Documentation: docs/


Roadmap

Current (v2.0)

  • Modular actor architecture (21 actors)
  • Neo4j as primary database
  • Binary WebSocket protocol V2 (36 bytes)
  • 100+ CUDA kernels (55x speedup)
  • OWL 2 EL reasoning with Whelk-rs
  • Meta Quest 3 WebXR (Beta)

In Progress (v2.1)

  • Vircadia multi-user integration
  • SPARQL query interface
  • Distributed GPU compute
  • Nostr identity integration

Future (v3.0+)

  • Apple Vision Pro native app
  • Federated ontologies
  • Kubernetes operator
  • W3C DID for agents

Detailed Roadmap: See full roadmap with quarterly sprints


Contributing

We welcome contributions! See our Contributing Guide.

# Fork and clone
git clone https://github.com/YOUR_USERNAME/VisionFlow.git
cd VisionFlow

# Setup
cargo build && cd client && npm install && cd ..

# Test
cargo test && npm test

# Submit PR

Contribution Areas: Bug Fixes | Documentation | Features | Performance | Testing


System Requirements

Tier CPU RAM GPU Use Case
Minimum 4-core 2.5GHz 8 GB Integrated Development, < 10K nodes
Recommended 8-core 3.0GHz 16 GB GTX 1060 / RX 580 Production, < 50K nodes
Enterprise 16+ cores 32 GB+ RTX 4080+ (16GB VRAM) 100K+ nodes, multi-user

Platform Support: Linux (full), macOS (CPU-only), Windows (WSL2), Meta Quest 3 (Beta)


Acknowledgements

Built on the work of:

Special thanks to Prof. Rob Aspin for research in immersive knowledge visualisation.


License

Mozilla Public License 2.0 - Use commercially, modify freely, share changes to MPL files.

Full License


Transform how you discover knowledge.

git clone https://github.com/DreamLab-AI/VisionFlow.git && cd VisionFlow && docker-compose --profile dev up -d

Documentation | Issues | Discussions

GitHub Stars GitHub Forks

Built by the VisionFlow Team

Releases

No releases published

Packages

No packages published

Languages

  • Rust 46.5%
  • TypeScript 23.9%
  • Python 13.2%
  • JavaScript 6.1%
  • Shell 3.9%
  • HTML 3.8%
  • Other 2.6%