Skip to content

Conversation

@nbswords
Copy link
Collaborator

No description provided.

@nbswords nbswords self-assigned this May 17, 2025
@nbswords nbswords requested review from Copilot and zephyr-sh May 17, 2025 06:32
Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

Adds a full summary of the new paper “Autoregressive Image Generation without Vector Quantization”, covering background, methodology, implementation details, experiments, and references

  • Introduces paper metadata, author link, and Chinese translation
  • Details vector quantization background and the proposed diffusion-based autoregressive method
  • Provides experiments on loss functions, tokenizers, MLP ablations, and system comparisons
Comments suppressed due to low confidence (1)

papers/image-generation/2406-mar/index.md:35

  • [nitpick] List indentation is inconsistent here and in subsequent bullet points. Use uniform indent levels for nested lists to improve readability.
+- 以[VQ-VAE, 2017]為例

- Diffusion Loss:consine形狀的noise schedule,訓練時DDPM有1000 step而推論則僅有100 step
- Denosing MLP(small MLP):3層1024個channel的block,每一個block包含LayerNorm, linear layer, SiLU 激活函數並使用residual connection連接,實作上是使用AdaLN將transformer的輸出z加入到LayerNorm層當中
- Tokenizer:使用LDM提供的公開tokenizer,包括VQ-16和KL-16。其中VQ-16是基於VQ-GAN的量化模型,使用GAN loss和感知loss,KL-16則透過KL散度做regularization且不依賴VQ
- Transformer:使用 ViT 來接收 tokenizer 處理後的 token sequene,加上位置編碼和類別token [CLS],然後通過32層1024個channel的transformer block
Copy link

Copilot AI May 17, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Typo in 'sequene'; it should be 'sequence'.

Suggested change
- Transformer:使用 ViT 來接收 tokenizer 處理後的 token sequene,加上位置編碼和類別token [CLS],然後通過32層1024個channel的transformer block
- Transformer:使用 ViT 來接收 tokenizer 處理後的 token sequence,加上位置編碼和類別token [CLS],然後通過32層1024個channel的transformer block

Copilot uses AI. Check for mistakes.
- Tokenizer:使用LDM提供的公開tokenizer,包括VQ-16和KL-16。其中VQ-16是基於VQ-GAN的量化模型,使用GAN loss和感知loss,KL-16則透過KL散度做regularization且不依賴VQ
- Transformer:使用 ViT 來接收 tokenizer 處理後的 token sequene,加上位置編碼和類別token [CLS],然後通過32層1024個channel的transformer block
- Masked autoregressive models:在訓練階段使用 [0.7, 1.0] 的masking ratio,0.7代表隨機遮蔽掉70%的token,另外為了避免抽樣出來的序列太短,他們始終pad 64個[cls] token到其中。在推理階段會逐步將1.0的masking ratio降低到0,並使用cosine schedule來調整步數,預設是64步
- Baseline Autoregressive Model: casual attention的GPT模型,輸入有append一個[cls],並且有使用kv cache以及溫度參數
Copy link

Copilot AI May 17, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Typo in 'casual attention'; it should be 'causal attention'.

Suggested change
- Baseline Autoregressive Model: casual attention的GPT模型,輸入有append一個[cls],並且有使用kv cache以及溫度參數
- Baseline Autoregressive Model: causal attention的GPT模型,輸入有append一個[cls],並且有使用kv cache以及溫度參數

Copilot uses AI. Check for mistakes.
@nbswords nbswords requested a review from Copilot May 17, 2025 06:36
Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR introduces a new markdown document detailing a paper on autoregressive image generation without using vector quantization.

  • Added a new markdown file with paper details, experimental setups, and comparison figures.
  • Provides background, methodology, and implementation details for the proposed approach.

nbswords and others added 12 commits May 17, 2025 14:41
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
@zephyr-sh zephyr-sh merged commit f59f2e0 into main May 17, 2025
1 check passed
@zephyr-sh zephyr-sh deleted the feat/add_mar_paper branch May 17, 2025 11:21
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants