Skip to content
View Dimas0824's full-sized avatar

Highlights

  • Pro

Block or report Dimas0824

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Dimas0824/README.md

Muhammad Irsyad Dimas Abdillah


Tentang Saya

Mahasiswa Teknik Informatika di Politeknik Negeri Malang dengan fokus pada pengembangan backend, optimasi database, serta integrasi IoT dan Machine Learning.

def introduce():
    profile = {
        "education": "Teknik Informatika - Politeknik Negeri Malang",
        "passion": ["Backend Development", "Database Optimization", "IoT", "Machine Learning"],
        "philosophy": "First, solve the problem. Then, write the code."
    }
    return profile

Kontak


Keahlian Teknis

Bahasa Pemrograman & Framework

const technicalSkills = {
    languages: ['PHP', 'Python', 'JavaScript', 'Java', 'Dart'],
    frameworks: ['Laravel', 'TensorFlow', 'Keras', 'Flutter'],
    databases: ['MySQL', 'SQL Server'],
    tools: ['Git', 'VS Code', 'Postman', 'Arduino', 'Jupyter']
};

PHP Laravel Python JavaScript Java Dart Flutter Filament

Manajemen Database

SELECT skill_name, proficiency_level
FROM my_skills
WHERE category = 'Database Management'
ORDER BY proficiency_level DESC;

MySQL SQL Server

Machine Learning & Data Science

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import LSTM, Dense, Dropout

class MLEnthusiast:
    def __init__(self):
        self.frameworks = ['TensorFlow', 'Keras', 'Scikit-learn', 'PyTorch', 'Statsmodels']
        self.libraries = ['NumPy', 'Pandas', 'Matplotlib', 'Seaborn', 'Plotly', 'Optuna', 'SciPy', 'Joblib', 'ect']
        self.expertise = [
            'Time Series Forecasting (ARIMA, LSTM, GRU)',
            'Deep Learning (LSTM, GRU)',
            'Clustering & Dimensionality Reduction (KMeans, DBSCAN, PCA)',
            'Unsupervised Learning & Visualization',
            'Statistical Analysis',
            'Model Evaluation, Optimization, & Tuning',
            'Data Preprocessing & Visualization'
        ]
        self.currently_learning = ['xLSTM', 'GPT Architecture']

TensorFlow Keras Scikit-learn PyTorch NumPy Pandas Optuna

Tools & Platforms

Git GitHub VS Code Postman Arduino Kaggle Google Colab


Proyek Unggulan

MAGNET - Sistem Informasi Magang

namespace App\Projects\MAGNET;

class InternshipRecommendation {
    use RecommendationBasedonPreference, optimizeData;
    
    public function getOptimalPlacement(Student $student): Recommendation
    {
        return $this->algorithm
            ->considerLocation($student->location)
            ->analyzeSkills($student->skills)
            ->matchWithCompanies()
            ->optimize();
    }
}

Stack: Laravel 10, Livewire, FLux UI, MySQL

Sistem manajemen magang dengan algoritma rekomendasi cerdas untuk penempatan mahasiswa secara optimal. Fitur utama mencakup rekomendasi berbasis preferensi pengguna dan optimasi penempatan berbasis data. Untuk menghasilkan rekomendasi yang lebih akurat, sistem memanfaatkan ROC (Receiver Operating Characteristic) sebagai evaluasi performa model klasifikasi, serta metode MULTIMOORA sebagai pendekatan multi-criteria decision making untuk menentukan penempatan terbaik berdasarkan berbagai faktor.

Lihat Repository →


IHSG LSTM Forecasting

import tensorflow as tf
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout

class IHSGForecaster:
    def __init__(self):
        self.model = self.build_lstm_model()
        self.metrics = {
            'MAPE': '1.33%',
            'architecture': 'Optimized LSTM Neural Network'
        }
    
    def build_lstm_model(self):
        model = Sequential([
            LSTM(units=50, return_sequences=True),
            Dropout(0.2),
            LSTM(units=50),
            Dense(units=1)
        ])
        return model

Stack: Python, TensorFlow, Keras

Model forecasting time series untuk IHSG menggunakan LSTM Neural Networks dengan hasil MAPE 1.33% dan arsitektur optimal.

Lihat Repository →


Streamlytics Netflix — User Segmentation

from sklearn.cluster import KMeans, DBSCAN
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import pandas as pd
import numpy as np

class StreamlyticsNetflix:
    def __init__(self, data):
        self.data = data
        self.kmeans = KMeans(n_clusters=5, random_state=42)
        self.dbscan = DBSCAN(eps=0.5, min_samples=5)

    def run(self):
        X = (self.data.select_dtypes(include=np.number) - self.data.mean()) / self.data.std()
        self.data['KMeans'] = self.kmeans.fit_predict(X)
        self.data['DBSCAN'] = self.dbscan.fit_predict(X)
        return self.data

Stack: Python, Scikit-learn, Pandas, NumPy

Segmentasi pengguna Netflix menggunakan K-Means dan DBSCAN untuk mengelompokkan perilaku menonton dan preferensi genre.

Lihat Repository →


Sistem Kasir Cafe

public class CafePOS {
    private MenuManager menuManager;
    private InventorySystem inventory;
    private SalesAnalytics analytics;
    
    public Transaction processOrder(Order order) {
        inventory.updateStock(order.getItems());
        Transaction transaction = new Transaction(order);
        analytics.recordSale(transaction);
        return transaction;
    }
}

Stack: Java

Sistem POS untuk manajemen kafe mencakup menu, inventori, dan analitik penjualan.

Lihat Repository →


Statistik GitHub

GitHub Streak


Profile views

Pinned Loading

  1. MAGNET-Magang-Network-And-Tracking MAGNET-Magang-Network-And-Tracking Public

    Forked from Maju-Lancar/MAGNET-Magang-Network-And-Tracking

    MAGNET 🧲 (Magang Network and Tracking) adalah platform sistem informasi magang dengan integrasi sistem pendukung keputusan, yang memberikan rekomendasi tempat magang terbaik bagi mahasiswa. Proyek …

    Blade

  2. IHSG-LSTM_Forecasting IHSG-LSTM_Forecasting Public

    IHSG-LSTM Forecasting — Prediksi Indeks Harga Saham Gabungan (IHSG) dengan LSTM Neural Network. Edukasi & eksplorasi machine learning untuk analisis time series.

    Jupyter Notebook

  3. FarrelAD/Calculate-Subsidy-With-Fuzzy-Logic FarrelAD/Calculate-Subsidy-With-Fuzzy-Logic Public

    This project is to try to calculate how much subsidy for a farmer based on land area, rice production, and irigation. The method used here is Mamdani and Sugeno.

    Jupyter Notebook

  4. streamlytics-netflix streamlytics-netflix Public

    Netflix 2025 dataset: preprocessed and cleaned

    Jupyter Notebook 1

  5. barbershop-booking barbershop-booking Public

    TypeScript

  6. HaikalMuhammadRafli/Sistem-Kasir_kel01 HaikalMuhammadRafli/Sistem-Kasir_kel01 Public

    Java 2