Skip to content
/ MMEA Public

[AAAI 2026] Official Repository for Magnitude‑Modulated Equivariant Adapter

Notifications You must be signed in to change notification settings

CLaSLoVe/MMEA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMEA: Magnitude‑Modulated Equivariant Adapter for Parameter‑Efficient Fine‑Tuning of Equivariant GNNs

Accepted by AAAI 2026 as poster. Citation:

@article{jin2025magnitude,
  title={Magnitude-Modulated Equivariant Adapter for Parameter-Efficient Fine-Tuning of Equivariant Graph Neural Networks},
  author={Jin, Dian and Yuan, Yancheng and Tao, Xiaoming},
  journal={arXiv preprint arXiv:2511.06696},
  year={2025}
}

MMEA introduces a lightweight adapter that scales each multiplicity block by scale gating, achieving SOTA performance in PEFT of SO(3)-equivariant GNNs for molecular force field prediction.

Magnitude-Modulated Equivariant Adapter

Installation

First install pytorch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128 # follow your env

Install all required packages with the following command:

pip install ase opt_einsum opt_einsum_fx icecream torch_ema torchmetrics matscipy h5py prettytable hostlist

Quick Validation

You can run the following for a quick test on rMD17-Aspirin:

python -m mace.cli.run_train  --name="rmd17-Aspirin"  --train_file="repro_data/dataset/dataset_rmd17/revised_aspirin/train.xyz"  --valid_fraction=0.5  --test_file="repro_data/dataset/dataset_rmd17/revised_aspirin/test.xyz"  --E0s="average"  --model="MACE"  --loss="ef"  --num_interactions=2  --num_channels=128  --max_L=1  --correlation=3  --r_max=5.0  --lr=0.005  --forces_weight=1000  --energy_weight=1  --weight_decay=1e-8  --clip_grad=100  --batch_size=5  --valid_batch_size=5  --max_num_epochs=500  --scheduler_patience=5  --ema  --ema_decay=0.995  --swa  --start_swa=400  --error_table="TotalMAE"  --default_dtype="float64" --device=cuda  --seed=123  --save_cpu  --energy_key="REF_energy"  --forces_key="REF_forces"  --foundation_model="repro_data/foundation_model/MACE-OFF23_medium.model" 

Datasets

Our datasets include rMD17, 3BPA, and AcAc, which are the same as those used in MACE.

Among them, 3BPA and AcAc are used for comprehensive evaluation, while rMD17, being relatively simple, is used to assess the model's few-shot learning capabilities. For fairness, we adopt the same data splits for training.

To facilitate reproducibility, we provide the final data splits for rMD17 in repro_data/dataset/dataset_rmd17. The original rMD17 dataset can be downloaded from [2], and the 3BPA and AcAc datasets are available at BOTNet [3].


Baselines

Full-parameter fine-tuning and ELoRA fine-tuning use the setup described in the ELoRA repository.


Training with MMEA

With the environment active, any standard mace.cli.run_train command will automatically load the MMEA adapter. See repro_data/run.md for more detailed information. Example:

python -m mace.cli.run_train \
  --name "[EXPERIMENT_NAME]" \
  --train_file "[PATH/TO/train.xyz]" \
  --valid_fraction [FRACTION] \
  --test_file "[PATH/TO/test.xyz]" \
  --foundation_model "[PATH/TO/pretrained.model]" \
  --model "MACE" \
  --loss "ef" \
  --num_interactions 2 \
  --num_channels 128 \
  --max_L 1 \
  --r_max 5.0 \
  --lr 0.005 \
  --forces_weight 1000 \
  --energy_weight 1 \
  --batch_size 5 \
  --max_num_epochs [EPOCHS] \
  --ema \
  --ema_decay 0.995 \
  --error_table "[TotalMAE/TotalRMSE]" \
  --device cuda \
  --seed [SEED] \
  --save_cpu
  # ---- optional: SWA ----
  --swa \
  --start_swa [SWA_EP]

Important Note: During training, you should see the following message:

====================================================================================================
 MMEA_RANK:  16
====================================================================================================

This indicates that the program is running correctly.


Acknowledgements

We would like to express our sincere gratitude to:

  • ELoRA [4] for releasing their low-rank adaptation baseline, and
  • MACE [1] for providing the foundation on which both ELoRA and MMEA are built.

We are grateful for their excellent work and open-source contributions to the community's subsequent research.

References

[1] Batatia I, Kovacs D P, Simm G, et al. MACE: Higher order equivariant message passing neural networks for fast and accurate force fields[J]. Advances in neural information processing systems, 2022, 35: 11423-11436.

[2] Christensen A S, Von Lilienfeld O A. On the role of gradients for machine learning of molecular energies and forces[J]. Machine Learning: Science and Technology, 2020, 1(4): 045018.

[3] Batatia I, Batzner S, Kovács D P, et al. The design space of E (3)-equivariant atom-centred interatomic potentials[J]. Nature Machine Intelligence, 2025, 7(1): 56-67.

[4] Wang C, Hu S, Tan G, et al. ELoRA: Low-Rank Adaptation for Equivariant GNNs[C]//Forty-second International Conference on Machine Learning.

About

[AAAI 2026] Official Repository for Magnitude‑Modulated Equivariant Adapter

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published