Authors: Diksha Gupta, Charles Kopec, Adrian Bondy, Thomas Luo, Verity Elliott, Carlos Brody
This repository contains analysis code for investigating neural population dynamics in rat frontal orienting fields (FOF) and anterior dorsal striatum (ADS) during a perceptual decision-making task with accumulating sensory evidence. The analyses include neural encoding and decoding, generalized linear models (GLM), reduced-rank regression, optogenetic perturbation experiments, and multi-region recurrent neural network (RNN) modeling.
├── Code/
│ ├── figure_code/ # Analysis scripts organized by figure
│ │ ├── figure1/ # Population response characterization
│ │ ├── figure2/ # Neural encoding/decoding and GLM
│ │ ├── figure3/ # Optogenetic perturbation analysis
│ │ ├── figure4_6/ # RNN modeling
│ │ └── helpers/ # Shared utility functions
│ ├── saved_results/ # Intermediate analysis outputs (.npy, .pkl)
│ ├── run_params.py # Global configuration and paths
│ └── my_imports.py # Standard imports and plotting settings
├── figure_pdfs/ # Generated figures (PDF format)
├── requirements.txt # Python dependencies
- Scripts:
figure1_popraster.py,figure1_trialraster.py - Outputs: Population PSTHs, single-trial rasters
- Scripts:
figure2_encodingfigs.py,figure2_decodingfigs.py,figure2/fig2_helpers/ - Analyses:
- Choice, evidence, and history decoding using logistic regression
- Tuning curve analysis (
compute_hanks_tuning_curves.py) - Reduced-rank GLM for inter-region communication (
neural_GLM/glmfits_rr.py) - Cross-correlation of decision variables (
DVcc_sims.py)
- Script:
figure3/figure1_metaopto.m(MATLAB) - Analysis: Effects of inactivation of FOF to ADS projections on behavior
- Scripts:
figure4_6/train_nn_1_multiplicative_opto.py,analysis/fig4_save_*.py - Architecture: Multi-region RNN with recurrent connectivity trained on evidence accumulation task
- Analyses: Network inactivation simulations, decoding from RNN units, recovery mechanisms
Before running analyses, edit Code/run_params.py:
BASEPATH = "/path/to/Code/"All other paths are automatically configured relative to BASEPATH.
For questions regarding code or analyses, please contact Diksha Gupta [diksha.gupta@ucl.ac.uk]