This project aims to accelarate Fungal indetification performed in BioEngineering department at DTU using Deep Learning.
First create a conda virtual environment and activate it:
conda create --name <my-env>Then install the requirements:
# to install requirements
conda install --yes --file requirements.txtThe project currently uses the pytorch nightly build for Python 3.12 compatibility.
The dataset used for training and evaluating the models is a part of a research conducted at biolab at DTU, hence it's not avaiable for public use.
The project structure can be seen in the structure.md file:
├── README.md <- The top-level README for developers using this project.
├── data <- Basic data - configuration files, label files.
│
│
├── best_model <- Trained and serialized best performing model, model predictions, or model summaries.
│
├── plots
│ ├── Learning_Curves <- Learning curves of all trained models.
│ │
│ └── Confusion_Matrices <- Confusion matrices of all evaluated models.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment.
│
├── src <- Source code for use in this project.
│ ├── api
│ │ │
│ │ ├── templates <- Folder with html templates.
│ │ └── main.py <- Main api file.
│ ├── utils <- Convenience functions for converting, formatting, etc.
│ │ │
│ │ ├── CombineChannels.py <- Helper class to create 4 or 5 channel images.
│ │ ├── DenseNet.py <- DenseNet implementation.
│ │ ├── Hyperparams.py <- Hyperparameters.
│ │ ├── loss.py <- Loss functions.
│ │ ├── ResNet.py <- ResNet implementation.
│ │ ├── train.py <- Training loop.
│ │ └── ViT.py <- Visual transformers implemetation.
│ │
│ ├── preprocessing <- Image preprocessing files
│ │ │
│ │ ├── Image_gradient.py <- Script that creates an image gradient dataset.
│ │ ├── LBP.py <- Script that creates a local binary patterns dataset.
│ │ └── Resizing.py <- Script that creates a resized dataset.
│ │
│ ├── notebooks <- Jupyter notebooks.
│ │ │
│ │ ├── DataDistrubtion.ipynb <- Different visualization regarding the dataset.
│ │ ├── mean&std.ipynb <- Calculates mean and standard deviation of a dataset.
│ │ └── Model_evaluation.ipynb <- Checks the model performence on unseen data.
│ │
│ └── main.py <- Script for training the model.
└── LICENSE <- Open-source license.
'''